DOI QR코드

DOI QR Code

An NMR Study on Complexation of Cesium Ion by p-tert-Butylcalix[6]arene Ethyl Ester

  • Chung, Kee-Choo (School of Chemistry and Molecular Engineering, College of Natural Sciences, Seoul National University) ;
  • Namgoong, Hyun (E&A Center, Kolon Central Research Park) ;
  • Lee, Jo-Woong (School of Chemistry and Molecular Engineering, College of Natural Sciences, Seoul National University)
  • Published : 2004.05.20

Abstract

Complexation of cesium ion by p-tert-butylcalix[6]arene ethyl ester was studied by NMR spectroscopy in nonpolar $CDCl_3$ and polar acetone-$d_6$ and the results were compared with each other. Analysis of temperature dependent $^1H$ spectra and titration curves reveals that both solvents result in a 1 : 1 cone-form complex with nonpolar $CDCl_3$yielding a more tightly bound one than acetone-$d_6$. Unexpectedly, at very low temperature, we have found that two phenyl ring proton peaks of equal intensity appear both in $CDCl_3$and in acetone-$d_6$ solution which gradually collapse and eventually coalesce into a single line as temperature is raised. This observation could be interpreted in terms of the chemical exchange through direct and/or indirect interconversion between two equivalent conformations possible the complex in both solvents over the temperature range observed. And broadening of $^{133}Cs$ (I = 7/2) nmr line with increasing temperature has also been observed, indicating the exchange of $^{133}Cs$ ion between the complex and the solvent. From numerical fitting of lineshape changes for one-dimensional $^1H$ and $^{133}Cs$ spectra, the exchange rate constants and other relevant parameters for this conformational interconversion and the complex-solvent exchange were deduced.

Keywords

References

  1. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989.
  2. Vicense, J.; Böhmer, V. Calixarenes, A Versatile Class of Macrocyclic Compounds; Kluwer: Dordrecht, 1990.
  3. Valeur, B.; Leray, I. Coord. Chem. Rev. 1991, 205, 3. https://doi.org/10.1016/S0010-8545(00)00246-0
  4. Casnati, A.; Fischer, C.; Guardigli, M.; Isernia, A.; Manet, I.;Sabbatini, N.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1996, 395.
  5. Ludwig, R. Fresenius J. Anal. Chemt. 2000, 367, 103. https://doi.org/10.1007/s002160051611
  6. Shinkai, S. Tetrahedron 1993, 49, 8933. https://doi.org/10.1016/S0040-4020(01)91215-3
  7. Marsella, M. J.; Newland, R. J.; Caroll, P. J.; Swager, T. M. J. Am.Chem. Soc. 1995, 117, 9842. https://doi.org/10.1021/ja00144a009
  8. Consoli, G. M. L.; Cunsolo, F.; Geraci, C.; Gavuzzo, En.; Neri, P.Tetrahedron Letters 2002, 43, 1209. https://doi.org/10.1016/S0040-4039(01)02364-4
  9. Kang, S. O.; Nam, K. C. Bull. Korean Chem. Soc. 2002, 23,640. https://doi.org/10.5012/bkcs.2002.23.4.640
  10. Harrowfield, J. M.; Ogden, M. I.; Richmond, W. R.; White, A. H. J. Chem. Soc., Chem. Commun. 1991, 115.
  11. Yamada, A.; Murase, T.; Kikukawa, K.; Arimura, T.; Shinkai, S. J.Chem. Soc. Perkin Trans. 2 1991, 77.
  12. Beasley, T. M.; Jennings, D. Environ. Sci. Technol. 1984, 18,207. https://doi.org/10.1021/es00121a014
  13. Alberts, J. J.; Wahlgren, M. A. Environ. Sci. Technol. 1981, 15, 94. https://doi.org/10.1021/es00083a010
  14. Talanova, G. G.; Elkarim, N. S. A.; Talanov, V. S.; Bartsch, R. A.Anal. Chem. 1999, 71, 3106. https://doi.org/10.1021/ac990205u
  15. Lamare, V.; Dozol, J. F.; Fuangswasdi, S.; Arnaud-Neu, F.; Thuery,P.; Nierlich, M.; Asfari, Z.; Vicens, J. J. Chem. Soc., Perkin Trans. 2 1999, 271.
  16. Creaven, B. S.; Deasy, M.; Gallagher, J. F.; McGinley, J.; Murray,B. A. Tetrahedron 2001, 57, 8883. https://doi.org/10.1016/S0040-4020(01)00872-9
  17. Brevard, C.; Granger, P. Handbook of High Regolution MultinuclearNMR; John Wiley & Sons: New York, 1981.
  18. Sandstrom, J. Dynamic NMR Spectroscopy; Acedemic Press:London, 1981.
  19. de Boer, J. A. A.; Reinhoudt, D. N. J. Am. Chem. Soc. 1985, 107,5347. https://doi.org/10.1021/ja00305a004