DOI QR코드

DOI QR Code

Fluorimetric Determination of Dichloroacetamide by RPLC with Postcolumn Detection

  • Choi, Yong-Wook (School of Natural Science, Jeonju University) ;
  • Reckhow, David A. (Department of Civil and Environmental Engineering, University of Massachusetts at Amherst)
  • Published : 2004.06.20

Abstract

An RPLC-postcolumn detection method has been developed for the fluorimetric determination of dichloroacetamide (DCAD) in water. After ammonia and DCAD were separated on a $C_{18}$ nonpolar stationary phase with 2.5% methanol-0.02 M phosphate buffer at pH 3, the column eluant was reacted with post column reagents, o-phthaldialdehyde (OPA) and sulfite ion at pH 11.5, to produce a highly fluorescent isoindole fluorophore, which was measured with a fluorescence detector ( ${\lambda}_{ex}$ = 363 nm, ${\lambda}_{em}$ = 425 nm). With the optimized conditions for RPLC and the postcolumn derivatization, the calibration curve was found to be linear in the concentration ranges of 0.5 and 20 ${\mu}$M for DCAD, and the detection limit for DCAD was 0.18 ${\mu}$M (23${\mu}$g/L). This corresponded to 18 pmol per 100 ${\mu}$L injection volume for a signal-to-noise ratio of 3, and the repeatability and reproducibility of this method were 1.0% and 2.5% for five replicate analyzes of 2 ${\mu}$M DCAD, respectively. The degradation yields DCAD to ammonia were 94 and 99%, and the percent recoveries of DCAD from 4 and 6 ${\mu}$M DCAD-spiked tap water were shown mean more than 97%.

Keywords

References

  1. Glatz, B. A. J. AWWA 1978, 70(8), 465.
  2. Chen, A. M. Science 1980, 207(4), 90. https://doi.org/10.1126/science.6985746
  3. Oliver, B. G. J. AWWA 1983, 17(2), 80.
  4. Krasner, S. W.; McGuire, M. J.; Jacangelo, J. G. et al. J. AWWA1989, 80(8), 41.
  5. Singer, P. C. J. Environ. Engineer. 1993, 120, 727.
  6. Reckhow, D. A.; Singer, P. C. J. AWWA 1984, 76(4), 151.
  7. U.S. EPA. Federal register, U.S. EPA, 1994.
  8. Ozawa, H. J. Chromatogr. 1993, 644, 375. https://doi.org/10.1016/0021-9673(93)80722-K
  9. Terhy, M. L.; Bieber, T. I. Advances in the Identification andAnalysis of Organic Pollutants in Water; Keith, L. H., Ed.; AnnArbor Science: Ann Arbor, MI, 1981; Vol. 2, p 941.
  10. Oliver, B. G. Environ. Sci. Technol. 1983, 17(2), 80. https://doi.org/10.1021/es00108a003
  11. Yeom, C. M.; Choi, Y. S.; Beon, S. J.; Cho, S. H.; Yoon, J. Y. Kor.Soc. Wat. Wast. 2002, 16(2), 169.
  12. Park, S. J.; Pyo, H. S.; Park, S. S. A Study on the AnalyticalMethod and National Surveys of Trace Hazardous Compounds in
  13. Yeom, C. M.; Choi, Y. S.; Cho, S. H.; Yoon, J. Y. J. Korean Soc.Water Qual. 2003, 19(1), 127.
  14. Lee, K. J.; Hong, J. E.; Pyo, H. S.; Park, S. J.; You, J. G.; Lee, D.W. Anal. Sci. Tech. 2003, 16(3), 249.
  15. Park, Y. S. Master degree thesis; Yonsei University, 1996.
  16. Kim, J. S. Master degree thesis; Yonsei University, 1996.
  17. Alouini, Z.; Seux, R. Wat. Res. 1987, 21(3), 335-343. https://doi.org/10.1016/0043-1354(87)90213-2
  18. Glezer, V.; Harris, B.; Tal, N.; Iosefzon, B.; Lev, O. Wat. Res.1999, 33(8), 1938. https://doi.org/10.1016/S0043-1354(98)00361-3
  19. Kezdy, F.; Bruylants, A. Bull. Soc. Chim. Belg. 1960, 69, 602.
  20. Mersaar, U.; Bratt, L. Acta Chem. Scand. 1974, A28(7), 715.
  21. U.S. EPA Method 551.1, 1995.
  22. U.S. EPA Method 552, 1990.
  23. U.S. EPA Method 552.1, 1992.
  24. U.S. EPA Method 552.2, 1992.
  25. Ko, Y.-W.; Gremm, T. J.; Abbt-Braun, G.; Frimmel, F. H.; Chiang,P.-C. Fresenius J. Anal. Chem. 2000, 366, 244. https://doi.org/10.1007/s002160050048
  26. Magnuson, M. L.; Kelty, C. A. Anal. Chem. 2000, 72(10), 2308. https://doi.org/10.1021/ac991469j
  27. Richardson, S. D.; Thruston, A. D.; Caughran, T. V.; Chen, P. H.;Colette, T. W.; Floyd, T. L.; Schenck, K. M.; Lykins, B. W.; Sun,G-R.; Majetich, G. Environ. Sci. Technol. 1999, 33(19), 3378. https://doi.org/10.1021/es9900297
  28. Rapp, T.; Reckhow, D. A. manuscript in preparation for submissionto Water Research 2004.
  29. Roth, M. Anal. Chem. 1971, 43(7), 880. https://doi.org/10.1021/ac60302a020
  30. Genfa, Z.; Dasgupta, P. K. Anal. Chem. 1989, 61, 408. https://doi.org/10.1021/ac00180a006
  31. Choi, Y. W.; Kim, M. K.; Choi, Y. J. J. Nat. Sci. Res. Inst. JeonjuUniv. 1997, 10(3), 6.
  32. Choi, Y. W. J. Kor. Soc. Water Qual. 2003, 19(6), 731.
  33. Perrin, D. D.; Dempsey, B. Buffer for pH and Metal Ion Control;Chapman and Hall: London, 1974; p 156.
  34. Kai, M.; Kojima, E.; Ohkura, Y. J. Chromatogr. A 1993, 653, 235. https://doi.org/10.1016/0021-9673(93)83179-V
  35. Snyder, L. R.; Kirkland, J. J. Introduction to Modern LiquidChromatography, 2nd Ed.; John Wiley & Sons, Inc.: New York,1979; pp 272-280.
  36. Harris, D. C. Quantitative Analytical Chemistry, 4th Ed.; W. H.Freeman and Company: New York, 1995; Chap. 4.
  37. Chung, Y. S.; Chung, W. S. Bull. Korean Chem. Soc. 2003, 24(12),1781. https://doi.org/10.5012/bkcs.2003.24.12.1781
  38. Eskandari, H.; Karkaragh, G. I. Bull. Korean Chem. Soc. 2003,24(12), 1731. https://doi.org/10.5012/bkcs.2003.24.12.1731

Cited by

  1. Simultaneous Fluorimetric Determination of On-line Preconcentrated HANs, DCAD and TCAD by Using RPLC with a Postcolumn Derivatization System vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1783