DOI QR코드

DOI QR Code

Spectrophotometric Determination of Nitrite Based on Its Reaction with p-Nitroaniline in the Presence of Diphenylamine in Micellar Media

  • Afkhami, Abbas (Department of Chemistry, Faculty of Sciences, Bu-Ali Sina University) ;
  • Masahi, Shokofeh (Department of Chemistry, Faculty of Sciences, Bu-Ali Sina University) ;
  • Bahram, Morteza (Department of Chemistry, Faculty of Sciences, Bu-Ali Sina University)
  • Published : 2004.07.20

Abstract

In the present work a very simple, sensitive and selective spectrophotometric method for the determination of nitrite in micellar media is described. The method is based on the color reaction of nitrite with p-nitroaniline in the presence of diphenylamine in acid media. In order to remove the extraction step, Triton X-100, a non-ionic surfactant was used as micellar media. The optimum reaction conditions such as acid concentration, reagents concentration and effect of time have been studied and the analytical characteristics of the method such as limit of detection, linear range and molar absorptivity have been obtained. The interference of some anions and cations was also tested. The method was applied to the determination of nitrite in real samples.

Keywords

References

  1. Davis, J.; Mc Keegan, K. J.; Cardosi, M. F.; Vaughan, D. H. Talanta 1999, 50, 103. https://doi.org/10.1016/S0039-9140(99)00110-1
  2. Fox, J. B. CRC Crit. Rev. Anal. Chem. 1985, 15, 283.
  3. Abbas, M. N.; Mostafa, G. A. Anal. Chim. Acta 2000, 410, 185. https://doi.org/10.1016/S0003-2670(00)00736-4
  4. Kage, S.; Kudo, K.; Ikeda, N. J. Chromatogr. B 2000, 742, 363. https://doi.org/10.1016/S0378-4347(00)00189-4
  5. Healeh, M. I. H.; Korenaga, T. J. Chromatogr. B 2000, 744, 433. https://doi.org/10.1016/S0378-4347(00)00264-4
  6. Davis, J.; Compton, R. G. Anal. Chim. Acta 2000, 404, 241. https://doi.org/10.1016/S0003-2670(99)00724-2
  7. Moorcroft, M. J.; Nei, L.; Davis, J.; Compton, R. G. Anal. Lett. 2000, 33, 3127. https://doi.org/10.1080/00032719.2000.10399490
  8. Mori, V.; Bertotti, M. Anal. Lett. 1999, 32, 25. https://doi.org/10.1080/00032719908542596
  9. Barciela-Alonso, M. C.; Prego, R. Anal. Chim. Acta 2000, 416, 21. https://doi.org/10.1016/S0003-2670(00)00865-5
  10. Okemgbo, A. A.; Hill, H. H.; Siems, W. F.; Metcalf, S. G. Anal. Chem. 1999, 71, 2725. https://doi.org/10.1021/ac990198+
  11. Mir, M.; Frenzel, W.; Cerda, V.; Estela, J. M. Anal. Chim. Acta 2001, 437, 55. https://doi.org/10.1016/S0003-2670(01)00962-X
  12. Ahmed, M. J.; Stalikas, C. D.; Tzouwara-Karayanni, S. M.; Karayannis, M. I. Talanta 1996, 43, 1009. https://doi.org/10.1016/0039-9140(95)01824-7
  13. Ensafi, A. A.; Kazemzadeh, A. Anal. Chim. Acta 1999, 382, 15. https://doi.org/10.1016/S0003-2670(98)00755-7
  14. Daniel, A.; Birot, D.; Lehaitre, M.; Poncin, J. Anal. Chim. Acta 1995, 308, 413. https://doi.org/10.1016/0003-2670(94)00449-V
  15. Guerrero, R. S.; Benito, C. G.; Calatayud, J. M. Talanta 1996, 43, 239. https://doi.org/10.1016/0039-9140(95)01749-6
  16. Afkhami, A.; Mogharnesband, A. A. Anal. Lett. 1994, 27, 991. https://doi.org/10.1080/00032719408007367
  17. Afkhami, A.; Jalali, F. Microchem. J. 1997, 57, 224. https://doi.org/10.1006/mchj.1997.1450
  18. Moorcroft, M. J.; Davis, J.; Compton, R. G. Talanta 2001, 54, 785. https://doi.org/10.1016/S0039-9140(01)00323-X
  19. Xuexian, G.; Tianze, Z.; Dayong, Q. Talanta 1996, 43, 169. https://doi.org/10.1016/0039-9140(95)01686-4
  20. Verma, K. K.; Verma, A. Anal. Letters 1992, 25, 2083. https://doi.org/10.1080/00032719208020077
  21. Miro, M.; Cladera, A.; Esterla, J. M.; Cerda, V. Analyst 2000, 125, 943. https://doi.org/10.1039/a910263i

Cited by

  1. Biodegradation of 3-Nitrobenzoate by Bacillus flexus strain XJU-4 vol.27, pp.7, 2011, https://doi.org/10.1007/s11274-010-0611-4
  2. Kinetic Determination of Trace Amounts of Nitrite Using an Optical Chemical Sensor vol.40, pp.6, 2012, https://doi.org/10.1002/clen.201100273
  3. Nitrite determination in water samples based on a modified Griess reaction and central composite design vol.5, pp.21, 2013, https://doi.org/10.1039/c3ay40913a
  4. Ion pair-based dispersive liquid–liquid microextraction combined with UV-Vis spectrophotometry as a circuitous assay for nitrite vol.7, pp.20, 2015, https://doi.org/10.1039/C5AY01812A
  5. Spectrophotometric Determination of Nitrite in Water Samples with 4-(1-Methyl-1-Mesitylcyclobutane-3-yl)-2-Aminothiazole vol.39, pp.4, 2004, https://doi.org/10.1080/00032710600611590
  6. Enhancement of Nitrite Oxidation by Heat-Treated Cobalt Phthalocyanine Supported on High Area Carbon vol.27, pp.2, 2004, https://doi.org/10.5012/bkcs.2006.27.2.329
  7. Determination of nitrites by the formation of bisazo dye vol.61, pp.6, 2004, https://doi.org/10.2478/s11696-007-0060-1
  8. A simple and sensitive spectrophotometric method for the determination of trace amounts of nitrite in environmental and biological samples using 4-amino-5-hydroxynaphthalene-2,7-disulphonic acid monos vol.75, pp.5, 2004, https://doi.org/10.1016/j.saa.2010.01.010
  9. Biodegradation of 2-Nitrotoluene by Micrococcus sp. strain SMN-1 vol.22, pp.1, 2004, https://doi.org/10.1007/s10532-010-9379-3
  10. Turn-On Type Fluorogenic and Chromogenic Probe for the Detection of Trace Amount of Nitrite Ion in Water vol.34, pp.2, 2004, https://doi.org/10.5012/bkcs.2013.34.2.389
  11. Solvent stir bar microextraction technique with three-hollow fiber configuration for trace determination of nitrite in river water samples vol.26, pp.32, 2004, https://doi.org/10.1007/s11356-019-06336-y
  12. Phenosafranin-Based Colorimetric-Sensing Platform for Nitrite Detection Enabled by Griess Assay vol.20, pp.5, 2004, https://doi.org/10.3390/s20051501
  13. Analytical Chemistry Optical Chemosensor for Spectrophotometric Determination of Nitrite in Wastewater vol.5, pp.20, 2020, https://doi.org/10.1002/slct.202001366