DOI QR코드

DOI QR Code

Lewis Acid-Catalyzed Reactions of Anthrone: Preference for Cycloaddition Reaction over Conjugate Addition Depending on the Functionality of α,β-Unsaturated Carbonyl Compounds

  • Baik, Woon-Phil (Department of Chemistry, Myoun Ji University) ;
  • Yoon, Cheol-Hoon (Department of Chemistry, Myoun Ji University) ;
  • Koo, Sang-Ho (Department of Chemistry, Myoun Ji University) ;
  • Kim, Ha-Kwon (Department of Chemistry and GNRL, Kyung Hee University) ;
  • Kim, Ji-Han (Department of Chemistry and GNRL, Kyung Hee University) ;
  • Kim, Jeong-Ryul (Department of Chemistry and GNRL, Kyung Hee University) ;
  • Hong, Soo-Dong (Department of Chemistry and GNRL, Kyung Hee University)
  • Published : 2004.04.20

Abstract

The Lewis acid-catalyzed reactions of anthrone with a variety of ethylenic substrates under various conditions have been studied. It has been observed that depending on kinds of ethylenic substrates and catalysts, products were varied. In particular, the $ZnCl_2$-catalyzed reaction of anthrone with ${\alpha},{\beta}$ -unsaturated ester gave bridged compounds 3 (Diels-Alder adduct type) and mono-Michael adduct 4 exclusively, while the base-catalyzed reaction gave 10,10-bis-Michael adduct as a major product independent of the amount of ethylenic substrate and base. Bridged compounds 3 were easily converted to the corresponding mono-Michael adduct 4 by a catalytic amount of base. Further Michael reaction of mono-Michael adducts with different ethylenic substrates in the presence of a catalytic amount of alkoxide gave unsymmetrical 10,10-bis Michael adducts in good or moderate yields.

Keywords

References

  1. Beak, P.; Mills, S. G. J. Org. Chem. 1985, 50, 1216. https://doi.org/10.1021/jo00208a014
  2. Kanamaru, N.; Nagakura, S. J. Am. Chem. Soc. 1968, 90, 6905.2.
  3. Meek, J. S.; Evans, W. B.; Godefroi, V.; Benson, W. R.; Wilcox, M, F.; Clark, W. G.; Tiedeman, T. J. Org. Chem. 1961, 26, 4281. https://doi.org/10.1021/jo01069a024
  4. Gomez-Bengona, E.; Cuerva, J. M.; Mateco, C.;Echavarren, A. M. J. Am. Chem. Soc. 1996, 118, 8553. https://doi.org/10.1021/ja961373w
  5. Bruson, H. A. J. Org. Chem. 1942, 7, 2457.
  6. Bruson, H. A.;Riener, T. W. J. Am. Chem. Soc. 1942, 64, 2850. https://doi.org/10.1021/ja01264a037
  7. Money, T.; Raphael, R. A.; Scott, A. I.; Young, D. W. J. Chem. Soc. 1961,3958. https://doi.org/10.1039/jr9610003958
  8. Meek, J. S.; Monroe, P. A.; Bouboulis, C. J. J. Org. Chem.1963, 28, 2572. https://doi.org/10.1021/jo01045a021
  9. Meek, J. S.; Dann, J. R.; Poon, B. T. J. Am.Chem. Soc. 1956, 78, 5413. https://doi.org/10.1021/ja01601a067
  10. Meek, J. S.; Poon, B. T.; Cristol, S.J. J. Am. Chem. Soc. 1952, 74, 761. https://doi.org/10.1021/ja01123a052
  11. Cohen, D.; Miller, I. T.; Richards, K. E. J. Chem. Soc. (C) 1968,793, 7.
  12. Kanpp, S.; Ornaf, R. M.; Rodriques, K. J. Am. Chem. Soc. 1983, 105, 5494. https://doi.org/10.1021/ja00354a060
  13. Koerner, M.; Rickborn, B. J. Org. Chem. 1991, 56, 1373. https://doi.org/10.1021/jo00004a009
  14. Koerner, M.; Rickborn, B. J. Org. Chem. 1990, 55, 2662. https://doi.org/10.1021/jo00296a024
  15. Koerner, M.; Rickborn, B. J. Org. Chem. 1989, 54, 9. https://doi.org/10.1021/jo00262a004
  16. Willner, I.; Halpern, M. Synthesis 1979, 177.
  17. Pirkle, W. H.; Finn, J. M. J. Org. Chem. 1983, 48, 2779. https://doi.org/10.1021/jo00164a034
  18. Barnett, W. E.; Needham, L. L. J. Org. Chem. 1971, 36, 4134. https://doi.org/10.1021/jo00825a030
  19. Dimmel, D. R.; Shepard, D. J. Org.Chem. 1982, 47, 22. https://doi.org/10.1021/jo00340a006
  20. Majumdar, K. C.; Chattopadhyay, S. K.;Khan, A. T. Synthesis 1988, 552.
  21. Majumdar, K. C.; Khan, A.T.; Chattopadhyay, S. K. J. Chem. Soc., Chem. Commun. 1989,655.
  22. Baik, W.; Yoon, C. H.; Lee, K. C.; Lee, H. J.; Koo, S.; Yoon, B.;Kim, H. J. Chem. Res. (S) 1998, 358.
  23. Bergmann, E. D.; Ginsburg, D.; Pappo, R. Organic Reactions1959, 10, 179.
  24. Truce, W. E.; Wellisch, E. J. Am. Chem. Soc. 1952, 74,2881. https://doi.org/10.1021/ja01131a047
  25. Inukai, T.; Kojima, T. J. Org. Chem. 1967, 32, 872. https://doi.org/10.1021/jo01279a004
  26. Evans, D. A.; Golob, A. M. J. Am. Chem. Soc. 1975, 97, 4765. https://doi.org/10.1021/ja00849a054
  27. Papies, O.; Grimme, W. Tetrahedron Lett. 1980, 21, 2799. https://doi.org/10.1016/S0040-4039(00)78610-2
  28. Zoeckler, M. T.; Carpenter, B. K. J. Am. Chem. Soc. 1981, 103,7661. https://doi.org/10.1021/ja00415a048
  29. Tetrahedron Lett. v.21 Papies, O.;Grimme, W. https://doi.org/10.1016/S0040-4039(00)78610-2
  30. J. Am. Chem. Soc. v.103 Zoeckler, M. T.;Carpenter, B. K. https://doi.org/10.1021/ja00415a048
  31. J. Am. Chem. Soc. v.97 Evans, D. A.; Golob, A. M. https://doi.org/10.1021/ja00849a054
  32. Tetrahedron Lett. v.21 Papies, O.; Grimme, W. https://doi.org/10.1016/S0040-4039(00)78610-2
  33. J. Am. Chem. Soc. v.103 Zoeckler, M. T.; Carpenter, B. K. https://doi.org/10.1021/ja00415a048

Cited by

  1. Lewis Acid-Catalyzed Reactions of Anthrone: Preference for Cycloaddition Reaction over Conjugate Addition Depending on the Functionality of α,β-Unsaturated Carbonyl Compounds. vol.35, pp.36, 2004, https://doi.org/10.1002/chin.200436086
  2. Understanding the Reactivity of Group 6 Metal (M = Cr, W) Alkynyl Fischer Carbene Complexes with Multi-Reactive Masked Dienes vol.2019, pp.2-3, 2018, https://doi.org/10.1002/ejoc.201800453
  3. Synthesis of Novel Spiro Compounds using Anthrone and Pyrazole-5-thione Moieties: A Michael Addition approach vol.2007, pp.8, 2004, https://doi.org/10.3184/030823407x237821
  4. Acid-catalyzed conjugate additions to 3-fluorobutenone vol.130, pp.5, 2009, https://doi.org/10.1016/j.jfluchem.2009.02.007
  5. Enantioselective addition of anthrones to α,β-unsaturated aldehydes vol.50, pp.25, 2004, https://doi.org/10.1016/j.tetlet.2009.04.037
  6. Benzylic Functionalization of Anthrones via the Asymmetric Ring Opening of Oxabicycles Utilizing a Fourth‐Generation Rhodium Catalytic System vol.21, pp.40, 2004, https://doi.org/10.1002/chem.201502718