DOI QR코드

DOI QR Code

HEATED INTRACLUSTER GAS AND RADIO CONNECTIONS: THE SINGULAR CASE OF MKW 3S

  • MAZZOTTA PASQUALE (Dipartimento di Fisica, Universita di Roma Tor Vergata, via della Ricerca Scientifica Harvard-Smithsonian Center for Astrophysics) ;
  • BRUNETTI GIANFRANCO (Istituto di Radioastronomia del CNR) ;
  • GIACINTUCCI SIMONA (INAF - Osservatorio Astronomico di Bologna, via Ranzani) ;
  • VENTURI TIZIANA (Istituto di Radioastronomia del CNR) ;
  • BARDELLI SANDRO (INAF - Osservatorio Astronomico di Bologna, via Ranzani)
  • Published : 2004.12.01

Abstract

Similarly to other cluster of galaxies previously classified as cooling flow systems, the Chandra observation of MKW 3s reveals that this object has a complex X-ray structure hosting both a X-ray cavity and a X-ray filament. Unlike the other clusters, however, the temperature map of the core of MKW 3s shows the presence of extended regions of gas heated above the radially averaged gas temperature at any radius. As the cluster does not show evidences for ongoing major mergers Mazzotta et al. suggest a connection between the heated gas and the activity of the central AGN. Nevertheless, due to the lack of high quality radio maps, this interpretation was controversial. In this paper we present the results of two new radio observations of MKW 3s at 1.28 GHz and 604 MHz obtained at the GMRT. Together with the Chandra observation and a separate VLA observation at 327 MHz from Young, we show unequivocal evidences for a close connection between the heated gas region and the AGN activity and we briefly summarize possible implications.

Keywords

References

  1. Allen, S. W., et al. 2001, MNRAS, 324, 842 https://doi.org/10.1046/j.1365-8711.2001.04315.x
  2. Binney, J. & Tabor, G. 1995, MNRAS, 276, 663 https://doi.org/10.1093/mnras/276.2.663
  3. Buote, D. A. & Tsai, J. C. 1996, ApJ, 458, 27 https://doi.org/10.1086/176790
  4. De Breuck, C., van Breugel, W., R$\"o$ttgering, H. J. A., & Miley, G. 2000, A&AS, 143, 303 https://doi.org/10.1051/aas:2000181
  5. Eilek, J. & Arendt, P.N. 1996, ApJ 457, 150; https://doi.org/10.1086/176719
  6. Fabian, A. C. 1994, ARA&A, 32, 277 https://doi.org/10.1146/annurev.aa.32.090194.001425
  7. Fabian, A. C., et al. 2000, MNRAS, 318, L65 https://doi.org/10.1046/j.1365-8711.2000.03904.x
  8. Fabian, A. C., Mushotzky, R. F., Nulsen, P. E. J., & Peterson, J. R 2001, MNRAS, 321, L20 https://doi.org/10.1046/j.1365-8711.2001.04285.x
  9. Fabian, A. C., Sanders, J. S., Allen, S. W., Crawford, C. S., Iwasawa, K., Johnstone, R. M., Schmidt, R. W., & Taylor, G. B. 2003, MNRAS, 344, L43 https://doi.org/10.1046/j.1365-8711.2003.06902.x
  10. Forman, W., et al. 2003, ArXiv Astrophysics e-prints, astroph/0312576
  11. Girardi, M., Escalera, E., Fadda, D., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1997, ApJ, 482, 41 https://doi.org/10.1086/304113
  12. Jaffe, W. J. & Perola, G. C. 1973, A&A 26, 423
  13. Kaastra, J. S., Ferrigno, C., Tamura, T., Paerels, F. B. S., Peterson, J. R, & Mittaz, J. P. D. 2001, A&A, 365, L99 https://doi.org/10.1051/0004-6361:20000041
  14. Kardashev, N. S. 1962, Soviet Astronomy 6, 317
  15. Katz-Stone, D. M., Rudnick, L., Butenhoff, C., & O'Donoghue, A. A. 1999, ApJ, 516, 716 https://doi.org/10.1086/307123
  16. Mazzotta, P., Kaastra, J. S., Paerels, F. B., Ferrigno, C., Colafrancesco, S., Mewe, R., & Forman, W. R. 2002, ApJ, 567, L37 https://doi.org/10.1086/323512
  17. Nulsen, P. E. J., McNamara, B. R., Wise, M. W., & David, L. P. 2004, ArXiv Astrophysics e-prints, astro-ph/0408315
  18. Peterson, J. R., et al. 2001, A&A, 365, L104 https://doi.org/10.1051/0004-6361:20000021
  19. Tamura, T., et al. 2001, A&A, 365, L87 https://doi.org/10.1051/0004-6361:20000038
  20. Tregillis, I. L., Jones, T. W., & Ryu, D. 2004, ApJ, 601, 778 https://doi.org/10.1086/380756
  21. Young, A. 2004, Ph.D. Thesis, Univ. of Minnesota

Cited by

  1. Radio bubbles in clusters of galaxies vol.364, pp.4, 2005, https://doi.org/10.1111/j.1365-2966.2005.09673.x
  2. Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters vol.401, pp.3, 2010, https://doi.org/10.1111/j.1365-2966.2009.15794.x
  3. Possible AGN Shock Heating in the Cool‐Core Galaxy Cluster Abell 478 vol.630, pp.1, 2005, https://doi.org/10.1086/431750
  4. Bayesian modelling of the cool core galaxy group NGC 4325 vol.378, pp.4, 2007, https://doi.org/10.1111/j.1365-2966.2007.11660.x
  5. A COMBINED LOW-RADIO FREQUENCY/X-RAY STUDY OF GALAXY GROUPS. I. GIANT METREWAVE RADIO TELESCOPE OBSERVATIONS AT 235 MHz AND 610 MHz vol.732, pp.2, 2011, https://doi.org/10.1088/0004-637X/732/2/95
  6. Intracluster Entropy from Joint X‐Ray and Sunyaev‐Zel’dovich Observations vol.634, pp.2, 2005, https://doi.org/10.1086/496967
  7. The Feedback‐regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies vol.652, pp.1, 2006, https://doi.org/10.1086/507672
  8. What is a cool-core cluster? a detailed analysis of the cores of the X-ray flux-limitedHIFLUGCScluster sample vol.513, 2010, https://doi.org/10.1051/0004-6361/200912377
  9. Magnetic turbulence in cool cores of galaxy clusters vol.453, pp.2, 2006, https://doi.org/10.1051/0004-6361:20053518