DOI QR코드

DOI QR Code

Constant Correlation Factors between Temkin and Langmuir or Frumkin Adsorption Isotherms at Poly-Pt, Re, and Ni/Aqueous Electrolyte Interfaces

  • Chun Jang H. (Department of Electronic Engineering, Kwangwoon University) ;
  • Jeon Sang K. (Department of Electronic Engineering, Kwangwoon University) ;
  • Chun Jin Y. (School of Chemical Engineering, Seoul National University)
  • Published : 2004.11.01

Abstract

The constant correlation factors between the Temkin and the Langmuir or the Frumkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) for the cathodic H2 evolution reaction (HER) at poly-Pt and Re/0.5M $H_2SO_4$ and poly-Ni/0.05 M KOH aqueous electrolyte interfaces have been experimentally and consistently found using the phase-shift method. At intermediate values of the fractional surface coverage $(\theta),\;i.e.,\;02<{\theta}<0.8$, the Langmuir and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other even though the adsorption conditions or processes are different from each other. At the same range of $\theta$, correspondingly, the Frumkin and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other. The equilibrium constants $(K_o)$ for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ca. 10 times greater than those (K, Ko) for the corresponding Langmuir or Frumkin adsorption isotherms ($({\theta}\;vs.\; E)$. The interaction parameters (g) for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ra. 4.6 greater than those (g) for the corresponding Langmuir or Frumkin adsorption isotherms $({\theta}\;vs.\; E)$. These numbers (10 times and 4.6) can be taken as constant correlation factors between the corresponding adsolftion isotherms (Temkin, Langmuir, Frumkin) at the interfaces. The Temkin adsorption isotherm corresponding to the Langmuir or the Frumkin adsorption isotherm, and vice versa, can be effectively verified or confirmed using the constant correlation factors. Both the phase-shift methodand constant correlation factors are useful and effective for determining or confirming the suitable adsorption isotherms (Temkin, Langmuir, Frumkin) of intermediates for sequential reactions in electrochemical systems.

Keywords

References

  1. E. Gileadi, in Electrosorption, E. Gileadi, Editor, pp. 1-18, Plenum Press, New York (1967)
  2. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry,pp. 75-86, Addison-Wesley Pub. Co. Reading, MA(1975)
  3. E. Gileadi, Electrode Kinetics, pp. 261-280, VCH, New York (1993)
  4. J. OM. Bockris and S. U. M. Khan, Surface Electrochemistry, pp.261, 280-283, Plenum Press, New York (1993)
  5. J. OM. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry, 2nd Edition, Vol. 2A, pp. 1193-1201, Kluwer Academic/Plenum Pub. Co. New York (2000)
  6. B. E. Conway, G. Jerkiewicz, Editors, Electrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption, PV 94-21, The Electrochemical Society Proceeding Series, Pennington, NJ (1995)
  7. G. Jerkiewicz, Prog. Surf. Sci., 57, 137 (1998) https://doi.org/10.1016/S0079-6816(98)00015-X
  8. G. Jerkiewicz, J. M. Feliu, and B. N. Popov, Editors, Hydrogen at Surface and Interfaces, PV 2000-16, The Electrochemical Society Proceeding Series, Pennington, NJ (2000)
  9. J. H. Chun and K. H. Ra, J. Electrochem. Soc., 145, 3794 (1998) https://doi.org/10.1149/1.1838875
  10. J. H. Chun and K. H. Ra, in Hydrogen at Surface and Interfaces, G. Jerkiewicz, J. M. Feliu, B. N. Popov, Editors, PV 2000-16, pp. 159-173,The Electrochemical Society Proceedings Series, Pennington, NJ (2000)
  11. J. H. Chun, K. H. Ra, and N. Y. Kim, Int. J. Hydrogen Energy, 26,941 (2001) https://doi.org/10.1016/S0360-3199(01)00028-3
  12. J. H. Chun, S. K. Jeon, and J. H. Lee, J. Korean Electrochem. Soc.,5, 131 (2002) https://doi.org/10.5229/JKES.2002.5.3.131
  13. J. H. Chun, K. H. Ra, and N. Y. Kim, J. Electrochem. Soc., 149, E325 (2002) https://doi.org/10.1149/1.1497402
  14. J. H. Chun, K. H. Ra, and N. Y. Kim, J. Electrochem. Soc., 150, E207 (2003) https://doi.org/10.1149/1.1554919
  15. J. H. Chun, K. H. Ra, and N. Y. Kim, in Abstracts of the 203rd Electrochemical Society (ECS) Meeting, Vol. 2003-01, Abstract 1270, The Electrochemical Society, April 27-May 2, Paris, France(2003)
  16. J. H. Chun and S. K. Jeon, Int. J Hydrogen Energy, 28, 1333 (2003) https://doi.org/10.1016/S0360-3199(03)00003-X
  17. J. H. Chun, U.S. Pat. 6,613,218 (2003)
  18. J. H. Chun and N. Y. Kim, in Proceedings of the 4th International Conference 'HTM-2004', May 17-21, pp. 387-393, International Scientific Committee on Hydrogen Treatment of Materials (HTM), Donetsk-Svyatogorsk, Ukraine (2004)
  19. J. H. Chun, K. H. Ra, and N. Y Kim, J. Electrochem. Soc., 151, L11(2004) https://doi.org/10.1149/1.1783911
  20. J. H. Chun, S. K. Jeon, B. K. Kim, and J. Y. Chun, Int. J. Hydrogen Energy, in press (available via the Internet at http://www.sciencedirect.com/science/journal/03603199)
  21. J. H. Chun, S. K. Jeon, K. H. Ra, and J. Y. Chun, Int. J. Hydrogen Energy, in press (available via the Internet at http://www.sciencedirect.com/science/journal/03603199)
  22. J. H. Chun, S. K. Jeon, N. Y. Kim, and J. Y. Chun, Int. J. Hydrogen Energy , will be published
  23. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry,pp. 6, 72, Addison-Wesley Pub. Co. Reading, MA (1975)
  24. F. T. Wagner and P. N. Ross, J. Electroanal. Chem., 150, 141 (1983) https://doi.org/10.1016/S0022-0728(83)80198-3
  25. J. Jiang and A. Kucernak, Electrochem Solid-State Lett., 3, 559(2000) https://doi.org/10.1149/1.1391208
  26. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry, pp. 472-475, Addison-Wesley Pub. Co. Reading, MA(1975)