A Study on Counting Statistics of the Hybrid G-M Counter Dead Time Model Using Monte Carlo Simulations

몬테칼로 전산모사를 이용한 복합 G-M 계수기 불감시간 모형의 계측 통계 연구

  • Lee, Sang-Hoon (Innovative Technology Center for Radiation Safety, Dept. of Nuclear Engineering, Hanyang University(iTRS)) ;
  • Jae, Moo-Sung (Innovative Technology Center for Radiation Safety, Dept. of Nuclear Engineering, Hanyang University(iTRS))
  • 이상훈 (한양대학교 원자력공학과 방사선안전신기술연구센터) ;
  • 제무성 (한양대학교 원자력공학과 방사선안전신기술연구센터)
  • Published : 2004.12.30

Abstract

The hybrid dead time model adopting paralyzable (or extendable) and non-paralyzable (or non-extendable) dead times has been introduced to extend the usable range of G-M counters in high counting rate environment and the relationship between true and observed counting rates is more accurately expressed in the hybrid model. GMSIM, dead time effects simulator, has been developed to analyze the counting statistics of G-M counters using Monte Carlo simulations. GMSIM accurately described the counting statistics of the paralyzable and non-paralyzable models. For G-M counters that follow the hybrid model, the counting statistics behaved in between two idealized models. In the future, GMSIM may be used in predicting counting statistics of three G-M dead time models, which are paralyzable, non-paralyzable and hybrid models.

고계수율 환경에서의 G-M 계수기의 가용 범위를 확장하기 위하여 두 가지 불감시간(연장가능 및 연장불능)을 채택한 복합 모형이 개발되었으며, 이 복합모형 참 계수율과 실측 계수율간의 상관관계를 보다 정확히 설명한다. 이 논문에서는 몬테칼로 모사법에 근거한 G-M 계수기 불감효과 분석 프로그램 GMSIM을 개발하여 연장가능 불감시간 모형 및 연장불능 불감시간 모형에 적용하여 그 정확도를 확인하였다. GMSIM을 이용하여 복합 불감시간 모형을 따르는 G-M 계수기의 계수 통계 특성을 분석한 결과, 두 가지 이상적 모형의 중간적 특성을 보였다. 향후 GMSIM은 세 가지 모형의 불감시간 특성을 분석하는데 사용될 수 있다.

Keywords

References

  1. Lee, S. H., Jae, M. and Gardner, R. P, Journal of Nuclear Science and Technology, supplement 4, pp. 156-159(2004)
  2. Lee, S. H. and Gardner, R. P, A new G-M counter dead time model, Appl. Radiat. Isot., vol. 53, pp. 731-737(2000)
  3. Knoll, G, Radiation Detection and Measurement, John Wiley & Sons, New York(1989)
  4. Feller, W, On probability problems in the theory of counters, in R. Courant Anniversary Volume, Studies and Essays, Interscience,.New York(1948)
  5. Evans, R. D, The Atomic Nucleus, McGraw-Hill, New York(1995)
  6. Mueller, J. W, Dead-time problems, Nuclear Instruments and Methods, vol. 112, pp. 47-57(1973)
  7. Levert, C. and Scheen, W. L, Probability fluctuation of discharges in a Geiger-Mueller counter produced by cosmic radiation, Physica, vol. 10, pp.225-238(1943)
  8. Kosten, L, On the frequency distribution of the number of discharges counted by a Geiger-Mueller counter in a constant interval, Physica, vol. 10, pp. 749-756(1943)
  9. Libert, J, Nuclear Instruments and Methods, vol. 121, pp. 589-590(1975)
  10. Libert, J, Statistique de comptage avec distribution uniforme de temps mort, Nuclear Instruments and Methods, vol. 151, pp. 555-561(1978)