Analysis of radiation-induced micronuclei and aneuploidy involving chromosome 1 and 4 by FISH technique

FISH 기법을 이용한 방사선에 의한 소핵과 이수성 분석

  • Chung, Hai-Won (School of Public Health and institute of Health and Environment, Seoul National University) ;
  • Kim, Tae-Yon (School of Public Health and institute of Health and Environment, Seoul National University) ;
  • Cho, Yoon-Hee (School of Public Health and institute of Health and Environment, Seoul National University) ;
  • Kim, Su-Young (School of Public Health and institute of Health and Environment, Seoul National University) ;
  • Kang, Chang-Mo (Korea Institute of Radiological & Medical Sciences) ;
  • Ha, Sung-Whan (College of Medicine, Seoul National University)
  • Published : 2004.12.30


The cytokinesis-block micronucleus (CBMN) assay in combination with FISH technique using chromosome-specific centromeric probes for chromosome 1 and 4 was performed in mitogen stimulated human lymphocytes which were exposed to x-radiation to identify different sensitivity of chromosomes to the induction of micronuclei(MN) and aneuploidy by radiation. The frequencies of micronucleated cytokinesis-blocked(MNCB) cells and MN in binucleated lymphocytes(BN) increased with the increase in radiation dose. A significant induction of aneuploidy of chromosome 1 and 4 were found. The frequency of aneuploidy of chromosome 1 and 4 in the control were 9 per 2,000 BN cells and this increased to 47 and 71 following irradiation at a dose of 1 and 2 Gy, respectively. The induction of aneuploidy of chromosome 1 was higher than that of chromosome 4. The frequency of aneuploid BN cells with MN exhibiting positive centromere signal for either chromosome 1 and/or 4 increased in a dose dependent manner, and that for chromosome 1 is higher than that for chromosome 4. Among the total induced MN in irradiated lymphocytes, smaller proportion of MN exhibit centromeric signal of chromosome indicating that radiation-induced MN are mainly originated from chromosomal breakage rather than chromosomal non-disjunction. These results suggest that x-radiation can induce aneuploidy and supports the finding that chromosome vary in their sensitivity to aneuploidy induction by x-irradiation.

본 연구는 소핵분석과 염색체 1번 및 4번의 DNA probe를 이용한 FISH 기법을 병행하여 방사선에 의한 소핵과 이수성에 관여하는 각 염색체의 감수성을 평가하고자 하였다. 방사선 선량에 따라 소핵의 빈도는 증가하였으며 염색체 1번과 4번의 이수성도 대조군, 1 Gy 및 2 Gy 에서 각각 2000개의 BN세포 당 9개, 47개 및 71개로 유의하게 증가하였다. 염색체 1번의 이수성 빈도는 4번에 비해 높게 관찰되었다. 염색체 1번 및 4번을 포함하는 소핵도 방사선의 선량에 따라 증가하였으며, 소핵내 염색체 1번의 포함빈도가 4번보다 높게 관찰되었다. 또한 방사선에 의한 소핵 중 낮은 빈도의 염색체 signal를 포함하는 소핵이 관찰됨으로써 방사선에 의한 소핵은 대부분 절단에 의한 것임을 확인할 수 있었다. 따라서 본 연구 결과 방사선은 이수성을 유도하며 이에 염색체가 다르게 관여할 수 있음을 보여준다.


  1. H.W. Chung, S.J. Kang and S.Y. Kim, 'A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1.2.4-benzotrial', Mutat. Res., 516, 49-56(2002)
  2. A. Kryscio, W.U. Ulrich Muller, A. Owjcik, N. Kotschy, S. Grobelny and C.Streffer, 'A cytogenetic analysis of the long-term effect of uranium mining on peripheral lymphocytes using the micronucleus- centromere assay', Int. J. Radia. Biol. 77(11), 1087-1093(2001)
  3. J.N. Lucas, A. Awa, T. Straume, M. Poggensee, Y. Kodama, M. Nakano, K. Ohtaki, H.-U. Weier, D. Pinkel, J. Gray and G. Littlefield, 'Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation', Int. J. Radia. Biol., 62(1), 53-63(1992)
  4. J.D. Tucker, M.J. Ramsey, D.A. Lee and J.L. Hinkler, 'Validation of chromosome painting as a biodosimeter in human peripheral lymphocytes following acute exposure to ionizing radiation in vitro', Int. J. Radiat. Biol., 64, 27-37(1993)
  5. J.F. Barqunero, S. Knehr, H. Braselmann, M. Figel and M. Bauchinger, 'DNA-proportional distribution of radiation-induced chromosome aberrations analysed by fluorescence in situ hybridization painting of all chromosomes of a human female karyotype', Int. J. Radiat. Biol., 74(3), 315-323(1998)
  6. K.L. Johnson, D.J. Brenner, J. Nath, J.D. Tucker and C.R. Greard, 'Review radiation-induced breakpoint misrejoining in human chromosome: random or non-random?', Int. J. Radiat. Biol., 75(2), 131-141(1999)
  7. P. Finnon, D.C. Lloyd and A.A. Edwards, 'Fluorescence in situ hybridization detection of chromosomal aberrations in human lymphocytes: applicability to biological dosimetry', Int. J. Radiat. Biol., 68(4), 429-435(1995)
  8. A. Wojcik and C. Streffer, 'Comparison of radiation-induced aberration frequencies in chromosomes 1 and 2 of two human donors', Int. J. Radiat. Biol., 74(5), 573-581(1998)
  9. J.J.W.A. Boei, S. Vermeulen and A.T. Natarajan, 'Differential involvement of chromosomes 1 and 4 in the formation of chromosomal aberrations in human lymphocytes after x-irradiation', Int. J. Radiat. Biol., 72(2), 139-145(1997)
  10. S. Knehr, H. Zitzelsberger, H. Braselmann, U. Nahrstedt and M. Bauchinger, 'Chromosome analysis by fluorescence in situ hybridization: further indications for a non DNA-proporional involvement of single chromosomes in radiation-induced structural aberration', Int. J. Radiat. Biol., 70(4), 385-392(1996)
  11. S. Cigarran, L. Barrios, J.F. Barquinero, M.R. Caballin, M. Ribas and J. Egozcue, 'Relationship between the DNA content of human chromosomes and their involvement in radiation-induced structure aberrations, analysed by painting, Int. J. Radiat. Biol., 74(4), 449-455(1998)
  12. S. Knehr, H. Zitzelsberger, H. Braselmann, U. Nahrstedt and M. Bauchinger, Chromosome analysis by fluorescence in situ hybridization: further indications for a non-DNA-proportional involvement of single chromosome in radiation-induced structural aberrations, Int. J. Radiat. Biol., 70(4), 385-392(1996)
  13. T.K. Pandita, V. Gregoire, K. Dhingra and W.N. Hittelman, 'Effect of chromosome size on aberration levels caused by gamma radiation as detected by fluorescence in situ hybridization', Cytogenet. cell genet., 67, 94-101(1994)
  14. A.T. Natarajan, A.S. Balajee, J.J. Boei, F. Darroudi, I. Dominguez, H.P. Hande, M. Meifers, P. Slijepcevic, S.V. Vermeulen and Y. Xiao, 'Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization', Muatat. Res., 372, 247-258(1996)
  15. J.M. Craig and W.A. Bickmore, 'The distribution of CpG islands in mammalian chromosomes' Nature Genet., 7, 376-381(1994)
  16. A.T. Natarajan, S.E. Vlaslom, A. Manca, P.H.M. Lohman, J.A. Gossen, J. Vijg, F. Beerman, E. Hummler and I. Hansmann, 'Transgenic mouse- an in vivo system for detection of aneugeus In Mutation and the Environment Edited by : M.L. Mendelshon and R-J. Albertini(New York, Wileg-Liss) 295-299(1990)
  17. J.J. Boei and A.T. Natarajan, 'Detection of chromosome malsegregation to the daughter nuclei in cytokinesis-blocked transgenetic mouse splenocytes', Chromosome Res., 3(1), 45-53(1995)
  18. A.T. Natarajan, A.S. Balajee, J.J. Boei, S. Chatterjee, F. Darroudi, M. Grigorova, M. Noditi, H.J. Oh, P. Slijepcevic and S. Vermeulen, 'Recent development in the assessment of chromosomal damage', Int. J. Radiat. Biol., 66(5), 615-623(1994)
  19. A.D. Adema, J. Cloos, R.H. Verheijen, B.J. Braakhuis and P.E. Bryant, 'Comparison of bleomycin and radiation in the G2 assay of chromatid breaks'. Int. J. Radiat. Biol.,79(8), 655-661(2003)
  20. S. Puerto, J. Surralles, M.J. Ramirez, E. Carbonell, A. Creus and R. Marcos, 'Analysis of bleomysin- and cytosine arabinoside-induced chromosome aberration involving chromosomes land 4 by painting FISH', Mutat. Res., 439, 3-11(1999)
  21. S. Ellard, E.M. Parry and J.M. Parry, 'Use of multicolor chromosome painting to identify chromosome rearrangements in human lymphocytes exposed to bleomycin: a comparison with conventional cytogenetic analyses of Giemsa-stained chromosome', Envrion. Mol. Mutagen, 26(1), 44-54(1995)