DOI QR코드

DOI QR Code

Optoelectrical Properties of HgCdTe Epilayers Grown by Hot Wall Epitaxy

  • Published : 2004.07.31

Abstract

$Hg_{1-x}Cd_{x}Te$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111)/GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

Keywords

References

  1. R. Korenstein, P. Hallock, and B. MacLeod, J. Vac. Sci. Technol., vol. B9, pp. 630, 1991
  2. B. Pelliciari, J. Crystal Growth, vol. 86, pp. 146, 1988 https://doi.org/10.1016/0022-0248(90)90712-T
  3. I. Bath, J. Crystal Growth, vol. 117, pp. I, 1992 https://doi.org/10.1016/0022-0248(92)90706-O
  4. J. M. Arias, S. H. Shin, J. G. Pasko, R. E. DeWames, and E. R. Gertner, J. Appl. Phys., vol. 65, pp. 1747, 1989 https://doi.org/10.1063/1.342925
  5. P. S. Wijewamasuriya, M. Boukerche, and J. P. Faurie, J. Appl. Phys., vol. 67, pp. 859, 1990 https://doi.org/10.1063/1.345743
  6. M. Kasuga, D. Kodama, H. H. Agiwara, and K. Kagami, J. Jpn. Assoc. Crystal Growth, vol. 21, pp. 5377, 1994
  7. K. Shigenaka, L. Sugiura, F. Nakata, and K. Hiral1ara, J. Crystal Growth, vol. 145, pp. 145, 1994
  8. S. J. G. Pasko, and R. E. DeWames, J. Vac. Sci. Technol., vol. B10, pp. 1492, 1992 https://doi.org/10.1116/1.586277
  9. R. Sporken, Y. P. Chen, S. Sivananthan, M. D. Lange, and J. P. Faurie, J. Vac. Sci. Technol., vol. B10, pp. 1405, 1992
  10. J. P. Fourie, C. Hsu, S. Sivananthan, and X. Chu, Surf. Sci., vol. 168, pp. 473, 1986 https://doi.org/10.1016/0039-6028(86)90877-0
  11. J. F. Wang, K. Kikuchi, B. H. Koo, Y. Ishikawa, W. Uchida, and M. Isshiki, J. Crystal Growth, vol. 187, pp. 373, 1998 https://doi.org/10.1016/S0022-0248(98)00022-0
  12. S. D. Chen, L. Lin, X. Z. He, M. J. Ying, and R. Q. Wu, J. Crystal Growth, vol. 152, pp. 261, 1995 https://doi.org/10.1016/0022-0248(95)00110-7
  13. D. D. Edwall, J. Bajai, and E. R. Gertner, J. Vac. Sci. Technol., vol. A8, pp. 1045, 1990
  14. C. C. Klick, Phys. Rev., vol. 89, pp. 274, 1953 https://doi.org/10.1103/PhysRev.89.274
  15. R. H. Bube, Phys. Rev., vol. 101, pp. 1668, 1956 https://doi.org/10.1103/PhysRev.101.1668
  16. R. H. Bube, Photoconductivity of Solids (Wiley, New York, 1969) p. 391
  17. M. H. Weiler, In: Semiconductors and Semimetals, Eds. R. K. Willardson and A. C. Beer (Academic, New York, 1981) vol. 16, p. 180