Mycorrhizae Formation, Growth and Mineral Nutrient Uptake of Poncirus trifoliata in Response to P Application in Volcanic Ash Soil

화산회토양에서 인산 시용 수준별 탱자 유묘의 공생균근 형성과 생육 및 무기양분 흡수

  • Kang, Seok-Beom (Faculty of Horticultural Life Science, Cheju National University,) ;
  • Moon, Doo-Khil (Faculty of Horticultural Life Science, Cheju National University,) ;
  • Chung, Jong-Bae (Department of Agricultural Chemistry, Daegu University)
  • 강석범 (제주대학교 원예생명과학부) ;
  • 문두길 (제주대학교 원예생명과학부) ;
  • 정종배 (대구대학교 생명환경학부)
  • Received : 2003.08.14
  • Accepted : 2003.09.22
  • Published : 2003.10.30

Abstract

Mycorrhizae is well known to increase the uptake of P and other mineral nutrients of plants. But if available P levels in soil is too low or high, mycorrhizae formation is limited. This study was carried out to determine the optimum level of available P for mycorrhizae formation of Poncirus trifoliata (trifoliate orange) seedling in volcanic ash soil. Eight levels of P in the range $0-1050mg\;kg^{-1}$ were applied with double superphosphate, and in each P level mycorrhizal fungi inoculated and uninnoculated treatments were included. The seedlings were grown in a greenhouse for 5 months and mycorrhizae formation, growth, and nutrient uptake were measured. As P application level increased, mycorrhizae formation increased at lower range of P application and the highest formation ratio of 43% was found at $100mg\;kg^{-1}$ P level ($2.6mg\;kg^{-1}$ available P in soil). At further higher levels of P application, mycorrhizae formation was rather suppressed. Seedling growth was increased by the inoculation of mycorrhizal fungi, and maximum growth was found at $100mg\;kg^{-1}$ P level where mycorrhizae formation was highest. The growth and mineral nutrient uptake of Poncirus trifoliata seedling represented a significant positive correlation with mycorrhizae formation at all P treatments.

공생균근은 식물 뿌리에 의한 인산 등 무기염류의 흡수를 촉진시키지만 토양의 인산 농도 가 너무 낮거나 높으면 공생균근 형성이 억제되는 것으로 알려져 있다. 본 연구는 화산회토양에서 감귤 뿌리의 공생균근 형성에 적합한 유효인산 수준을 구명하기 위하여 수행하였다. 중과석을 인 공급원으로 하여 인산 시용량을 $0-1000mg\;kg^{-1}$으로 달리한 토양에서 공생균근균 접종과 비접종 처리로 나누어 탱자 유묘를 화분에 심어 유리온실에서 5개월 동안 재배하였다. 탱자 유묘의 공생균근 형성율은 인산 무시용구(유효인산 함량 $0.73mg\;kg^{-1}$)에서 33%이었는데, $50mg\;kg^{-1}$ 시용구(유효인산 함량 $2.6mg\;kg^{-1}$)에서 43%로 증가되었지만 $200mg\;kg^{-1}$ 시용구(유효인산 함량 $8.3mg\;kg^{-1}$)에서는 34%로 무시용구와 비슷하였고 그 이상 인산 시용량이 증가함에 따라 형성율은 오히려 감소하였다. 공생균근균의 접종으로 초장, 생체중 및 건물중 등으로 측정된 탱자 유묘의 생장은 비접종 처리구와 비교하여 모든 인산 처리 수준에서 증가되었으며, 그 증가량은 공생균근 형성율에 비례하였다. 그리고 탱자 유묘의 인산을 비롯한 무기양분 흡수량도 모든 인산 처리 수준에서 공생균근 형성율과 높은 정의 상관관계를 보였다.

Keywords

References

  1. Antunes, V., and E. J. B. N. Cardoso. 1991. Growth and nutrient status of citrus plant as influenced by mycorrhiza and phosphorus application. Plant Soil 131:11-19 https://doi.org/10.1007/BF00010415
  2. Baas, R. 1990. Effects of Glomus fasciculatum and isolated rhizosphere microorganisms on growth and phosphate uptake of Plantago major ssp. pleiosperma. p. 153-159.In M. L. van Beusichem (ed.) Plant nutrition - physiology and application. Kluwer Academic Publishers, New York, NY, USA
  3. Berchelt, V. 1989. Effect of different organic manures on the efficiency of VA mycorrhiza. Agric. Ecosys. Environ. 29:55-58 https://doi.org/10.1016/0167-8809(90)90254-B
  4. Bolan, N. S. 1991. A critical review on the role ofmycorrhizal fungi in the uptake of phosphoms by plants.Plant Soil 65:189-207
  5. Bolan, N. S., and A. D. Robson. 1984. Increasing phosphoms supply can increase the infection of plant root by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 16:419-420 https://doi.org/10.1016/0038-0717(84)90043-9
  6. Calvet, C., J. Pen, and J. M. Barea. 1993. Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-perlite mixture. Plant Soil 148:1-6 https://doi.org/10.1007/BF02185378
  7. Hirata, H., T. Masunaga, and H. Koiwa. 1987. Response of chickpea crown on ando-soil to vesicular-arbuscular mycorrhizal infection in relation to the level of phosphorus application. Soil Sci. Plant Nutr. 34:441-449
  8. Kang, S. B., S. M. Jwa, D. K. Moon, H. R. Han, and J. B. Chung. 2000a. Effects of source and application rate of phosphorus on growth and arbuscular mycorrhizae formation of trifoliate orange in volcanic ash soil. Korean J. Environ. Agric. 19:206-212
  9. Kang, S. B., D. K. Moon, and J. B. Chung. 2000b. Arbuscular-mycorrhizae colonization and mineral nutrient uptake of Poncirus Trifoliata seedling in volcanic ash soil. Korean J. Soil Sci. Fert. 33:283-291
  10. Kleinschmidt, G. D., and J. W. Gerdeman. 1972. Stunting of citrus seedlings in fumigated nursery soils related to absence of endomycorrhizae. Phytopathol. 62:1447-1453 https://doi.org/10.1094/Phyto-62-1447
  11. Krikun, J., and Y. Levy. 1980. Effect of vesicular arbuscular mycorrhiza on citrus growth and mineral composition. Phytoparasitica 8:195-200 https://doi.org/10.1007/BF03158316
  12. Kizhaeral S. S., and C. Charest. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25-32 https://doi.org/10.1007/s005720050159
  13. Lu, H., P. G. Braunberger, and M. H. Miller. 1994. Response of vesicular-arbuscular mycorrhizas of maize to Plant Soil 158:119-128 https://doi.org/10.1007/BF00007924
  14. Matsubara, Y., T. Karikomi., M. Ikuta., H. H. Hori., S. Ishikawa, and T. Harada. 1996. Effect of arbuscular mycorrhizal fungus inoculation on growth of apple (Malus ssp.) seedlings. J. Jpn. Soc. Hortic. Sci. 65:297-302 https://doi.org/10.2503/jjshs.65.297
  15. National Institute of Agricultural Science and Technology. 1988. Methods of Soil Chemical Analysis. Sami Press, Suwon, Korea
  16. National Jeju Agricultural Experiment Station. 1996. Annual research report. p. 452-458. NJAES, Jeju, Korea
  17. National Jeju Agricultural Experiment Station. 2000. Annual research report. p. 17. NJAES, Jeju, Korea
  18. Nemec, S., and J. C. V. Vu. 1990. Effect of soil phosphorus and Glomus intraradices on growth, nonstructural carbohydrates, and photosynthetic activity of Citrus aurantium. Plant Soil 128:257-263 https://doi.org/10.1007/BF00011117
  19. Qjala, J. C., W. M. Jarrell., J. A. Menge, and E. L. V. Johnson. 1982. Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron. J. 75:255-259
  20. Paul, E. A., and F. E. Clark. 1989. Soil microbiology and biochemistry. p. 291-323. Academic Press, Inc., San Diego, CA, USA
  21. Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55:158-161 https://doi.org/10.1016/S0007-1536(70)80110-3
  22. Ryu, I. S., S. H. Yoo, and J. H. Yoon. 1976. Fertility status of jeju volcanic ash soil and its improvement. J. Korean Soc. Soil Sci. Fert. 8:121-133
  23. Shrestha, Y. H., T. Ishii, and K. Kadoya. 1995. Effect of vesicular arbuscular mycorrhizal fungi on the growth, transpiration and distribution of photosynthate bearing sastsuma mandarin trees. J. Jpn. Soc. Hortic. Sci. 64:517-525 https://doi.org/10.2503/jjshs.64.517
  24. Shrestha, Y. H., T. Ishii, I. Matsumoto, and K. Kadoya. 1996. Effect of vesicular arbuscular mycorrhizal fungi on satsuma mandarin tree growth and water stress tolerance and on fruit development and quality. J. Jpn. Soc. Hortic. Sci. 64:801-807 https://doi.org/10.2503/jjshs.64.801
  25. Vejsadova. H., D. Siblikova., H. Hrselova, and V. Vancura. 1992. Effect of the VAM fungus Gtomus sp. on thegrowth and yield of soybean inoculated with Bradyrhizobium japonicum. Plant Soil 140:121-125 https://doi.org/10.1007/BF00012813
  26. Yoo. S. H., and K. C. Song. 1984. Chemical characteristics of soil in cheju island. II. Variations in chemical characteristics of the citrus orchard soils as a function of years of cultivation. J. Korean Soc. Soil Sci. Fert. 17:161-166