DOI QR코드

DOI QR Code

Preparation of Zirconium Nitride by Nitridation of Zirconia and its Physical Characteristics

Zirconia로부터 Zr 질화물의 합성 및 물리화학적 특성

  • 안범수 (대진대학교 이공대학 화학과) ;
  • 성기천 (대진대학교 이공대학 화학공학과)
  • Published : 2003.12.31

Abstract

Zirconium nitride powders were synthesized at a relatively lower temperature using methane as a reducing agent in the nitridation of zircoia. $ZrO_2$ powder was prepared by a sol-gel technique. The resulting sol-gel was centrifuged, and the gel was washed with deionized water. Anhydrous ammonia was used as the nitrogen source and methane was used as the reducing agent. Conversion diagrams show the equilibrium solid phase as a function of reagent concentrations for a specific temperature and gas pressure for the reagent system $NH_3-ZrO_2-CH_4$. The reagent concentration ranges within which pure ZrN is formed increase with increasing reaction temperature. Low pressure with an excess of hydrogen decreases the reaction temperature at which pure ZrN is formed. Low pressure together with the introduction of excess hydrogen into the reaction system increases Zr and N conversion efficiency and retards C deposition.

Keywords

References

  1. R. Van Meerteen and J. W. Coenen, J. Catal., 46, 13 (1977) https://doi.org/10.1016/0021-9517(77)90131-2
  2. A. Frenet, L. Degols, and F. Cruce, J. Catal., 56, 236 (1978) https://doi.org/10.1016/0021-9517(79)90110-6
  3. T. E. White, Catal. Rev., 8, 117 (1973) https://doi.org/10.1080/01614947408071858
  4. R. Scholler, B. Broddack, and H. Herden, J. Phys. Chem., 62, 17 (1981)
  5. M. Heni and E. Illenberger, J. Chem. Phys., 83, 6056 (1985) https://doi.org/10.1063/1.449594
  6. M. Badden. F. Berny, and G. Wipff. J. Mol. Liq., 90, 1 (2001) https://doi.org/10.1016/S0167-7322(00)00174-4
  7. L. George, K. Viswanadaan, and S. Singh, J. Phys. Chem., 101, 2459 (1997) https://doi.org/10.1021/jp9625570
  8. C. M. Wai and B. Waller, Ind. Eng. Chem. Res., 39, 4837 (2000) https://doi.org/10.1021/ie0002879
  9. V. Avdeev, N. Solokina, and L. Monaykina, J. Phys. Chem. Solids, 57, 837 (1996) https://doi.org/10.1016/0022-3697(96)00359-9
  10. M. Centeno, P. Malet, and I. Carrizosa, J. Phys. Chem. B, 104, 3310 (2000)
  11. L. Lacshmi, Z Juo, and E. Alyea, Langmuir, 15, 3521 (1999) https://doi.org/10.1021/la981103m
  12. S. Vaudagan, R. Comelli, and S. Canavesse, J. Catal., 169, 389 (1997) https://doi.org/10.1006/jcat.1997.1690
  13. R. Fix, G. Gordon, and D. Hoffman, Chem. Mater., 3, 1138 (1991) https://doi.org/10.1021/cm00018a034
  14. A. Schlegel and H. Ling, J. Phys. C, 10, 4889 (1977)
  15. G. Fischman and W. Petusky, J. Am. Ceram. Soc., 68, 185 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb15295.x
  16. A. Kingon, I. Lutz, and R. Davis, J. Am Ceram Soc., 66, 551 (1983)
  17. P. Netterfield, J. Martin, and D. Mackenez, J. Mater. Sci. Lett., 9, 972 (1990) https://doi.org/10.1007/BF00722192