References
- Argyris, J.H., Hease, M. and Mlejnek, H.P. (1980), "On an unconventional but natural formulation of a stiffness matrix", Comp. Meth. Appl. Mech. Eng., 22, 1-22. https://doi.org/10.1016/0045-7825(80)90048-1
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements - the use of mixed interpolation of tensorial components", Int. J. Num. Meth. Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
- Chen, W. and Cheung, Y.K. (1997), "Refined non-conforming quadrilateral thin plate bending element", Int. J. Num. Meth. Eng., 40, 3919-3935. https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3919::AID-NME243>3.0.CO;2-A
- Cheung, Y.K. and Chen, W. (1995), "Refined nine-parameter triangular thin plate bending element by using refined direct stiffness methods", Int. J. Num. Meth. Eng., 38, 283-298. https://doi.org/10.1002/nme.1620380208
- Choi, C.K. and Park, Y.M. (1989), "Nonconforming transition plate bending elements with variable midside nodes", Comput. Struct., 32, 295-304. https://doi.org/10.1016/0045-7949(89)90041-2
- Choi, C.K., Chung, K.Y. and Lee, T.Y. (2001), "A direct modification method for strains due to non-conforming modes", Struct. Eng. Mech., 11(3), 325-340. https://doi.org/10.12989/sem.2001.11.3.325
- Choi, C.K. and Lee, T.Y. (2002a), "Non-conforming modes for improvement of finite element performance", Struct. Eng. Mech., 14(5), 595-610. https://doi.org/10.12989/sem.2002.14.5.595
- Choi, C.K. and Lee, T.Y. (2002b), "Directly modified non-conforming modes for Mindlin plate-bending elements" J. Eng. Mech. ASCE, submitted.
- Choi, C.K., Lee, T.Y. and Chung, K.Y. (2002c), "Direct modification for non-conforming elements with drilling DOF", Int. J. Num. Meth. Eng., 55, 1463-1476. https://doi.org/10.1002/nme.550
- Choi, C.K. and Lee, T.Y. (2003), "Efficient remedy for membrane locking of 4-node flat shell elements by nonconforming modes", Comp. Meth. Appl. Mech. Eng., 192, 1961-1971. https://doi.org/10.1016/S0045-7825(03)00203-2
- Choi, C.K. and Lee, W.H. (1995), "Transition membrane elements with drilling freedom for local mesh refinements", Struct. Eng. Mech., 3(1), 75-89. https://doi.org/10.12989/sem.1995.3.1.075
- Choi, C.K. and Lee, W.H. (1996), "Versatile variable-node flat shell element", J. Eng. Mech. ASCE, 122, 432-441. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
- Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
- Choi, C.K. and Schnobrich, W.C. (1975), "Nonconforming finite element analysis of shells", J. Eng. Mech. Div. ASCE, 101, 447-464.
- Fellipa, C.A. and Bergan, P.G.. (1987), "A triangular bending element based on energy-orthogonal free formulation", Comp. Meth. Appl. Mech. Eng., 61, 129-160. https://doi.org/10.1016/0045-7825(87)90001-6
- Iura, M. and Atluri, S.N. (1992), "Formulation of a membrane finite element with drilling degrees of freedom", Comput. Mech., 9, 417-428. https://doi.org/10.1007/BF00364007
- Kim, S.H. and Choi, C.K. (1992), "Improvement of quadratic finite-element for Mindlin plate bending", Int. J. Num. Meth. Eng., 34(1), 197-208. https://doi.org/10.1002/nme.1620340112
- Lee, T.Y. and Choi, C.K. (2002), "A new quadrilateral 5-node non-conforming membrane element with drilling DOF", Struct. Eng. Mech., 14(6), 699-712. https://doi.org/10.12989/sem.2002.14.6.699
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- Park, Y.M. and Choi, C.K. (1997), "The patch tests and convergence for nonconforming Mindlin plate bending elements", Struct. Eng. Mech., 5(4), 471-490. https://doi.org/10.12989/sem.1997.5.4.471
- Taylor, R.L., Beresford, P.L. and Wilson, E.L. (1976), "A non-conforming element for stress analysis", Int. J. Num. Meth. Eng., 10, 1211-1219. https://doi.org/10.1002/nme.1620100602
- Wilson, E.L. and Ibrahimbegovic, A. (1990), "Use of incompatible displacement modes for the calculation of element stiffnesses or stresses", Finite Elem. Anal. Des., 31, 229-241.
- Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi, J. (1973), "Incompatible displacement models", in Numerical and Computer Models in Structural Mechanics, eds. S.J. Fenves, N. Perrone, A.R. Robinson, and W.C. Schnobrich, Academic Press, New York, 43-57.