Gill Ultrastructure of the Granular Ark, Tegillarca granosa (Bivalvia: Acridae)

꼬막, Tegillarca granosa 아가미의 미세구조

  • Ma, Kyung-Hwa (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Yosu National University) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, College of Fisheries and Ocean Science, Yosu National University)
  • 마경화 (여수대학교 수산해양대학 수산생명의학과) ;
  • 이정식 (여수대학교 수산해양대학 수산생명의학과)
  • Published : 2003.09.01

Abstract

Histology and ultrastructure of the gill in the granular ark, Tegillarca granosa are described using light and transmission electron microscopy. The gill of the clam have typical structure of the filibranch type. The gill filament have several band of lateral and apical cilia. The epithelial layer surrounding the hemolymph sinus is simple and consists of epithelial cells, ciliated cells and secretory cells. The epithelial cells are usually squamous and covered with microvilli. The ciliated cells are usually columnar and can be divided into two types (A and B). Type A cells are more abundance and have lower electron density than B cells. Ultrastructure of the cilia showed that '9+2' microtubular structure of the axial filament and '$2{\times}9$' proximal centriole structure in the cross section. Secretory cells are mainly observed in the apical region of the filament and can be divided into three types of A, B and C with morphological features of the secretory granules. Type A cells of oval shaped are more abundance than other secretory cells and contains numerous secretory granules of low electron dense. Type B cells contains secretory granules of membrane-bounded and high electron dense. Secretory granules of type C cells are elliptical and fine granules surrounding the homogeneous core materials.

광학현미경과 투과전자현미경을 이용하여 꼬막, Tegillarca granosa 아가미의 미세구조를 기재하였다. 꼬막의 아가미는 전형적인 사새형 아가미 구조를 가진다. 새엽은 다수의 측면섬모대와 정단섬모대를 가지며, 혈림프동을 둘러싸고 있는 새엽 상피층은 단층으로 상피세포, 섬모세포 그리고 분비세포들로 이루어져 있다. 상피세포들은 대부분 미세융모를 가진 편평형이다. 섬모세포는 원주형으로 두 종류(A와 B)로 구분되는데, A형 섬모세포는 B형 섬모세포에 비해 분포 비율이 높으며, 세포질의 전체적인 전자밀도는 낮다. 횡단면 표본에서 섬모 축사는 전형적인 "9+2" 구조를 나타냈으며, 기저 중심립은 "$2{\times}9$"의 구조를 보였다. 분비세포들은 새엽의 정단부에서 주로 관찰되며, 분비과립의 특징에 따라 세 종류 (A, B, C)로 구분할 수 있다. A형 분비세포는 다른 분비세포들에 비해 분포정도가 높고, 전자밀도가 낮은 분비과립을 함유한다. B형 분비세포는 막으로 싸여진 전자밀도가 높은 분비과립을 가지며, C형 분비세포들의 분비과립은 타원형으로 중심부의 균질한 물질을 과립상의 물질들이 싸고 있는 형태이다.

Keywords

References

  1. Atkins D: Fluid mechancis of the mussel gill: the lateral cilia, Mar Biol 70 : 275 281, 1982 https://doi.org/10.1007/BF00396846
  2. Axiak V, George JJ: Effect of exposure to petroleum hydro-carbons on the gill functions and ciliary activities of amarine bivalve, Mar Biol 94: 241 249,1987 https://doi.org/10.1007/BF00392936
  3. Beninger PG, Dlfour SC: Mucocyte distribution and relation-ship to particle transport on the pseudolamellibranch gill of Crassostrea virginica (Bivalvia: OstreidaB), J Shellfish Res 15(2): 502, 1996
  4. Beninger PG, Le Pennec M, Salaun M: New observations of the gills of Placopecten magellanicus (Mollusca: Bivalvia), and implications for nutrition, I. General anatomy and surface microanatomy, Mar BioI 98 : 61 70, 1988 https://doi.org/10.1007/BF00392659
  5. Beninger PG, St Jean S, Poussart Y, Ward JE: Gill fWlction and mucocyte distribution in Placopecten magellanicus and Mytilus edulis (Mollusca: Bivalvia): the role of mucus in particle transport. Mar Ecol Prog Ser 98 : 275 282, 1993 https://doi.org/10.3354/meps098275
  6. Choe BL, Park MS, Jeon LG, Park SR, Kim HT: Commercial Molluscs from the Freshwater and Continental Shelf in Korea, National Fisheries Research and Development Institute, Pusan, pp, 197, 1999, (Korean)
  7. Cross PC, Mercer KL: Cell and tissue ultrastructure: a func-tional perspective, WH Freeman and Company, New York, pp, 420, 2002
  8. Eble AF: Anatomy and histology of Mercenwla mercenarla, In: Kraeuter IN, Castagna M, eds, Biology of the hard clam, pp, 117 220, Elsevier, New York, 2001
  9. Fiala Medioni A, Metivier C, Herry A, Le Pennec M: Ultrastructure of the gill of the hydrothermal vent mytilid Ma KH & Lee JE: Gill Ultrastructure ofthe Granular Ark 231 Bathymodiolus sp,. Mar Biol 92: 65 72, 1986 https://doi.org/10.1007/BF00392747
  10. Gregory MA, George RC, Marshall OJ, Anandraj A, Mcclurg TP: The effects of mercury exposure on the surface morphology of gill filament in Perna perna (Mollusca: Bivalvia), Mar Pollut Bull 39(1) : 116 121,1999 https://doi.org/10.1016/S0025-326X(99)00119-8
  11. Morse MP, Zardus JD: Bivalvia, In: Harrison FW, Kohn AJ, eds, Microscopic anatomy of invertebrates, Vol. 6A, Mollusca II, pp, 7 118, A John Wiley & Sons, Inc, Publica-tion, New York, 1997
  12. Park JJ: Histological change of the mantle cavity organs of the equilateral venus, Gomphina veneriformis (Bivalvia: VeneridaB) exposed to cadmium, Thesis of Master, Yosu Nat'l Univ, pp, 58, 2003
  13. Way CM, Hombach DJ, Deneb T, Whitehead RA: A description of the ultrastructure of the gills of fre shwater bivalves, including a new structure, the frontal cirrus, Can J Zool 67: 357 362,1989 https://doi.org/10.1139/z89-053
  14. Yoo JS: Korean shells in colour, Iljisa, Seoul pp, 196, 1988,(Korean)