습지 퇴적물에서 비소의 성상과 이동 모의에 관한 수학적 모형

Modeling the Fate and Transport of Arsenic in Wetland Sediments

  • Park, Seok-Soon (Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University) ;
  • Wang, Soo-Kyun (Department of Environmental Science and Engineering, College of Engineering, Ewha Womans University)
  • 발행 : 2003.12.31

초록

습지에서 중금속이나 방사성 물질의 성상과 이동은 전자수용체와 유기탄소를 이용하는 미생물의 대사작용의 결과로 나타나는 지질화학적 작용과 밀접한 관계를 가지고 있으며, 이러한 지질화학적반응의 공간적인 분포는 주변 환경의 특성에 의해 영향을 받게 된다. 습지에서의 이러한 현상을 수학적으로 모의하기 위하여 식물의 존재 여부에 따른 퇴적물 내에서의 중금속 거동에 대한 일반적인 수학적 모형을 개발하였다. 본 모형에서 고려되는 주요 기작은 습지에서의 침적과 식물 뿌리의 존재가 퇴적물 내 지질화학적 반응과 이송 기작 및 혼합과정에 미치는 영향 등이며, 정상상태에 관한 수식들이 퇴적물 환경의 모의에 적용되었다. 수치모의 실험의 결과에 따르면, 열거된 물리학적기작들이 미생물의 유기 탄소원 분해작용의 결과로 나타나는 일련의 전자수용체, 그에 따른 반응물, 모형에서 고려된 중금속 물질인 비소 등 퇴적물내 화학 물질들의 수직적 분포에 중요한 영향을 미치는 것으로 나타났다. 또한 본 모형에서는 특정한 생물학적 변환 과정이 열역학적으로 호의적인 영역에서만 발생하는 것으로 고려되었음에도, 비생물학적 작용과 혼합 기작에 의하여 각각의전자수용체 분포의 수직적 중첩이나 역전 등 현장에서 실제 관측되는 현상 들을 잘 모사할 수 있었다.

The fate and transport of many trace metals, metalloids, and radionuclides in porous media is closely linked to the biogeochemical reactions that occur as a result of organic carbon being sequentially degraded by different microorganisms using a series of terminal electron acceptors. The spatial distribution of these biogeochemical reactions is affected by processes that are often unique and/or characteristic to a specific environment. Generic model formulations have been developed and applied to simulate the fate and transport of arsenic in two hydrologic settings, permanently flooded freshwater sediments, namely non-vegetated wetland sediments and vegetated wetland sediments. The key physical processes that have been considered are sedimentation, effects of roots on biogeochemistry, advective transport, and differences in mixing processes. Steady-state formulations were applied to the sedimentary environments. Results of numerical simulations show that these physical processes significantly affect the chemical profiles of different electron acceptors, their reduced species, and arsenate as well as arsenite that will result from the degradation of an organic carbon source in the sediments. Even though specific biological transformations are allowed to proceed only in zones where they are thermodynamically favorable, the results show that mixing as well as abiotic reactions can make the profiles of individual electron acceptors overlap and/or appear to reverse their expected order.

키워드

참고문헌

  1. Armstrong, W. 1979. Aeration in higher plants. Adv.Bot. Res. 7:226-332.
  2. Bedford B., D.R. Bouldin and B.D. Beliveau. 1991.Net oxygen and carbon dioxide balances in solutionsbathing roots of wetland plants. J. Ecol. 79:943-959
  3. Berner, R.A. 1980. Early Diagenesis; A TheoreticalApproach. Princeton University Press, Princeton,NJ, 241 p.
  4. Brendel, P.J. and G.W. Luther, III. 1995. Developmentof a gold amalgam voltametric microelectrodefor the determination of dissolved Fe, Mn,O2, and S (-II) in porewaters of marine and freshwatersediments. Environ. Sci. Technol. 29:751-761.
  5. Brix, H. 1993. Macrophyte-mediated oxygen transferin wetlands: Transport mechanisms and rates, p391-398. In: Constructed wetlands for waterquality improvement (G.A. Moshiri, eds.). LewisPublishers, Inc., Boca Raton, FL.
  6. Brix, H., B.K. Sorrel and H.H. Schierup. 1996. Gasfluxes by in situ convective flow in Phragmitesaustralis. Aquatic Botany 54:151-163.
  7. DiToro, D.M. 2001. Sediment Flux Modeling, JohnWiley & Sons, Inc., New York, NY.
  8. Dowdle, P.R., A.M. Laverman and R.S. Oremland.1996. Bacterial dissimilatory reduction of arsenic(V) to arsenic (III) in anoxic sediments. Appl. Environ.Microbiol. 62:1164-1669.
  9. Dzombak, D.A. and F.M.M. Morel. 1990. SurfaceComplexation Modeling: Hydrous Ferric Oxide.John Wiley, New York, NY.
  10. Gulens, J., D.R. Champ and K.E. Johnson. 1979.Influence of redox environments on the mobilityof arsenic in ground water, p. 81-95. In: ChemicalModeling in Aqueous Systems (E.A. Jenne, eds.).Am. Chem. Soc., Symp. Ser. 93.
  11. Grosse, W. 1997. Gas transport in trees. In: Contributions to Modern Tree Physiology, p. 57-74.(H. Renneberg, W. Eschrich, and H. Ziegler, eds.).Backhuys Publishers, Leiden, Netherlands.
  12. Hunter, K.S., Y. Wang and P. Van Cappellen. 1998.Kinetic modeling of microbially-driven redoxchemistry of subsurface environments: couplingtransport, microbial metabolism and geochemistry.J. Hydrol. 209: 53-80.
  13. Jardine, P.M., S.E. Fendorf, M.A. Mayes, L.L.Larsen, S.C. Brooks and W.B. Bailey. 1999. Fateand transport of hexavalent chromium in unsaturatedheterogeneous soil. Env. Sci. Technol. 33:2939-2944.
  14. Kallin, P.L. 1999. Modeling the fate and transport oftrace metal contaminants in natural and constructedsurface flow wetlands. Ph.D. Dissertation,Princeton University.
  15. Lovley, D.R. and S. Goodwin. 1988. Hydrogen concentrationas an indicator of the presence of the predominantterminal electron-accepting reaction inaquatic sediments, Geochim. Cosmochim Acta,52:2993-3003.
  16. Massacheleyn P.H., R.D. Delaune and W.H. Patrick.1991. Effect of redox potential and pH on arsenicspeciation and solubility in contaminated soil.Environ. Sci. Technol. 25:1414-1419.
  17. Matsunaga, T., G. Karametaxas, H.R. Von Guntenand P.C. Lichtner. 1993. Redox chemistry of ironand manganese minerals in river recharged aquifers:A model interpretation of a column experiment.Geochim. Cosmochim Acta, 57:1691-1704.
  18. Mendelssohn, I.A. 1993. Factors controlling the formationof oxidizing root channels: a review andannotated bibliography. Tech. Report WRP-DE-5. US Army Engineer Waterways ExperimentStation.
  19. Mitsch, W.J. and J.G. Gosselink. 1993. Wetlands, 2nded. Van Nostrand Reinhold Co., New York, NY.
  20. Morel, F.M.M. and J.G. Hering. 1993. Principles andApplications of Aquatic Chemistry. J. Wiley &Sons, New York, NY.
  21. Newman, D.K., T.J. Beveridge and F.M.M. Morel.1997a. Precipitation of Arsenic Trisulfide by Desulfotomaculumauripigmentum, Appl. Env. Microbiol.,63:2022-2028.
  22. Newman, D.K., E.K. Kennedy, J.D. Coates, D.Ahmann, D.J. Ellis, D.R. Lovley and F.M.M.Morel. 1997b. Dissimilatory arsenate and sulfatereduction in Desulfotomaculum auripigmentumsp. nov. Arch. Microbiol. 168:380-388.
  23. Otte, M.L., C.C. Kearns and M.O. Doyle. 1995. Accumulationof arsenic and zinc in the rhizosphere ofwetland plants. Bull. Environ. Contam. Toxicol. 55:154-161.
  24. Park, S.S. and P.R. Jaffé. 1996. Development of aredox potential model for the assessment of postdepositionalheavy metal mobility, Ecological Modelling91:169-181.
  25. Park, S.S. and P.R. Jaffé. 1999. A numerical model toestimate sediment oxygen levels and demand, J.Environ. Qual. 28:1219-1226.
  26. Ponnamperuma, F.N. 1984. Effects of flooding onsoils, p. 10-46. In: Flooding and Plant Growth (T.T. Kozlowki, eds.), Academic Press, New York,NY.
  27. Rabouille, C. and J.-F. Gaillard. 1991. A coupled modelrepresenting the deep-sea organic carbonmineralization and oxygen consumption in surficialsediments, J. Geophys. Res. 96:2761-2776.
  28. Scott, M.J. and J.J. Morgan. 1995. Reactions on oxidesurfaces, 1, Oxidation of As (III) by syntheticbirnessite. Environ. Sci. Technol. 29:1898-1905.
  29. Smith, S.L. and P.R. Jaffé. 1998. Modeling the transportand reaction of trace metals in water-saturatedsoils and sediments. Water Resour. Res. 34:3135-3147.
  30. Sorrel, B.K., H. Brix and P.T. Orr. 1993. Oxygen exchangeby entire root systems of Cyperus involucratusand Eleocharis sphacelata. J. AquaticPlant Management 31: 24-28.
  31. Sorrel, B.K. 1994. Airspace structure and mathematicalmodelling of oxygen diffusion, aeration andanoxia in Eleocharis sphacelata R. Br. roots. Aust.J. mar. Freshwater Res. 45:1529-1541.
  32. Sweerts, J.R.A., M-J. Bar-Gillissen, A.A. Corneleseand T.E. Cappenberg. 1991. Oxygen-consumingprocesses at the profundal and littoral sedimentwaterinterface of a small meso-eutrophic lake(Lake Vechten, the Netherands), Limnol. Oceananography36:1124-1133.
  33. Vitousek, P.M., T. Fahey, D.W. Johnson and M.J.Swift. 1988. Element interactions in forest ecosystems-succession, allometry and input-outputbudgets. Biogeochemistry 5:7-34.
  34. Von Gunten, U. and J. Zobrist. 1993. Biogeochemicalchanges in groundwater infiltration systems: Columnstudies. Geochim. Cosmochim. Acta 57:3895-3906.
  35. Wang, Y. and P. Van Cappellen. 1996. A multicomponentreactive transport model of early diagenesis:Application to redox cycling in coastal marinesediments, Geochim. Cosmochim. Acta 60:2993-3014.