• Title/Summary/Keyword: Geochemistry

Search Result 344, Processing Time 0.027 seconds

Environmental geochemistry of persistent organic pollutants in the Pearl River Delta

  • Peng Ping'an;Fu Jiamo;Sheng Guoying;Xiao Xianming;zhang Gan;Wang Xinming;Mai Bixian;Ran Rong;Cheng Fanzhong
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.8-10
    • /
    • 2002
  • POPs in sediments and soil in the PRD are comparable to or much higher than those reported in other regions. Some sites may be classified as POPs- polluted with high ecological risks. Large-scale land transform in the process of regional urbanization may facilitate the transfer of POPs in the soil to the sedimentary system by enhancing the soil run-off. Urban atmospheric PCBs in PRD are found to be less than some of the North American or European urbans, but PAHs are significantly higher. The center of the PRD has been the major source area of PAHs and organochlorine pesticides in the PRD. The northern part of the PRD serves as a regional sink for the air particulates and affiliated POPs.

  • PDF

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF

Geochemical Properties and Source Areas of Fluvial Terrace Deposits - A Case Study in Danyang and Geum River Basins - (하안단구 퇴적층의 지구화학적 특성과 기원지 - 단양천, 금천 유역을 대상으로 -)

  • Park, Chung-Sun;Cho, Young-Dong;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.27-40
    • /
    • 2019
  • This study tries to reveal source areas of fluvial terrace deposits in Danyang and Geum River basins located in the northern and southern parts of the Sobaek Mountains, respectively, through geochemistry. The samples analyzed in this study show different grain size properties and can be grouped into the coarse, medium and fine samples. Grain size properties suggest that the coarse samples are typically fluvial deposits and geochemistry from the coarse samples is also similar to that from the bedrocks within the basins. The fine samples show geochemical properties different from the bedrocks and similar to loess deposits in Korea. However, different geochemical concentrations among the fine samples can be also recognized, indicating mixtures of loess materials with weathering products of the bedrocks. One sample among the medium samples is considered as fluvial deposit due to geochemical similarity to the bedrocks, while geochemistry from another sample among the medium samples indicates that loess materials were mixed with more abundant weathering products of the bedrocks than those in the fine samples.