References
-
P. Ahern and W. Rudin, Periodic Automorphisms of
$C^n$ , Indiana Univ. Math. J. 44 (1995), 287–303 - D. N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects of Mathematics E 27, Vieweg, Braunschweig/Wiesbaden, 1995
-
D. E. Barrett, E. Bedford, and J. Dadok,
$T^n$ -actions on holomorphically separable complex manifolds, Math. Z. 202 (1989), 65–82 https://doi.org/10.1007/BF01180684 - D. Burns, S. Shnider and R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), 237–253 https://doi.org/10.1007/BF01390277
-
R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the
$\overline{\partial}$ equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1–86. https://doi.org/10.1016/0001-8708(82)90028-7 - S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1978
-
A. V. Isaev, Characterization of
$C^n$ by its automorphism group, Proc. Steklov Inst. Math. 235 (2001), 103–106. - A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), 1254–1279. https://doi.org/10.4153/CJM-2002-048-2
- W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70. https://doi.org/10.1007/BF01425490
-
A. Kodama, Characterizations of certain weakly pseudoconvex domains
$E({\kappa},{\alpha})$ in$C^n$ , Tohoku Math. J. 40 (1988), 343–365. - A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, preprint, 2002
- S. G. Krantz, Determination of a domain in complex space by its automorphism group, Complex Variables 47 (2002), 215–223. https://doi.org/10.1080/02781070290001445
- N. G. Kruzhilin, Holomorphic automorphisms of hyperbolic Reinhardt domains, Math. USSR-Izv. 32 (1989), 15–38. https://doi.org/10.1070/IM1989v032n01ABEH000732
- I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Inst. Math. Sci., Kyoto Univ. 4 (1968), 527–543
- R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1986
- S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119–152 https://doi.org/10.2748/tmj/1178228082
- S. Shimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. 15 (1989), 385–414.