References
- M. S. Baouendi, P. Ebenfelt and L. P. Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series 47, Princeton University Press, Princeton, NJ, 1999, pp. xii+404
- G. W. Bluman and S. Kumei, Symmetries and differential equations, Springer- Verlag, Berlin, 1989
- E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, I, Annali di Mat. 11 (1932), 17–90. https://doi.org/10.1007/BF02417822
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), no. 2, 219–271. https://doi.org/10.1007/BF02392146
- F. Engel and S. Lie, Theorie der Transformationsgruppen, I, II, II, Teubner, Leipzig, 1889, 1891, 1893
- M. Fels, The equivalence problem for systems of second-order ordinary differential equations, Proc. London Math. Soc. 71 (1995), 221–240. https://doi.org/10.1112/plms/s3-71.1.221
-
H. Gaussier and J. Merker, A new example of uniformly Levi degenerate hyper-surface in
$\mathbb{C}^3$ , Ark. Mat., to appear https://doi.org/10.1007/BF02384568 -
H. Gaussier and J. Merker, Nonalgebraizable real analytic tubes in
$\mathbb{C}^n$ , Math. Z., to appear -
H. Gaussier and J. Merker, Sur l'algöbrisabilitö locale de sous-variötös analytiques röelles gönöriques de
$\mathbb{C}^n$ , C. R. Acad. Sci. Paris Sör. I 336 (2003), 125–128. https://doi.org/10.1016/S1631-073X(02)00020-1 -
H. Gaussier and J. Merker, Göomötrie des sous-variötös analytiques röelles de
$\mathbb{C}^n$ et symötries de Lie des öquations aux dörivöes partielles, Bull. Soc. Math. Tunisie, to appear - F. Gonzalez-Gascon and A. Gonzalez-Lopez, Symmetries of differential equations, IV. J. Math. Phys. 24 (1983), 2006–2021. https://doi.org/10.1063/1.525960
- A. Gonzalez-Lopez, Symmetries of linear systems of second order differential equations, J. Math. Phys. 29 (1988), 1097–1105. https://doi.org/10.1063/1.527948
- N. H. Ibragimov, Group analysis of ordinary differential equations and the in-variance principle in mathematical physics, Russian Math. Surveys 47:4 (1992), 89–156. https://doi.org/10.1070/RM1992v047n04ABEH000916
- S. Lie, Theorie der Transformationsgruppen, Math. Ann. 16 (1880), 441–528. https://doi.org/10.1007/BF01446218
- J. Merker, Vector field construction of Segre sets, preprint 1998, augmented in 2000. Downloadable at arXiv.org/abs/math.CV/9901010
- J. Merker, On the partial algebraicity of holomorphic mappings between two real algebraic sets, Bull. Soc. Math. France 129 (2001), no. 3, 547–591
-
J. Merker, On the local geometry of generic submanifolds of
$\mathbb{C}^n$ and the analytic reflection principle, Viniti, to appear - P. J. Olver, Applications of Lie groups to differential equations. Springer-Verlag, Heidelberg, 1986
- P. J. Olver, Equivalence, Invariance and Symmetries, Cambridge University Press, Cambridge, 1995, pp. xvi+525
- H. Poincare, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo, II, Ser. 23 (1932), 185–220.
- B. Segre, Intorno al problema di Poincaré della rappresentazione pseudocon-forme, Rend. Acc. Lincei, VI, Ser. 13 (1931), 676–683
- B. Segre, Questioni geometriche legate colla teoria delle funzioni di due variabili complesse, Rendiconti del Seminario di Matematici di Roma, II, Ser. 7 (1932), no. 2, 59–107
- O. Stormark, Lie's structural approach to PDE systems, Encyclopaedia of math ematics and its applications, vol. 80, Cambridge University Press, Cambridge, 2000, pp. xv+572
- A. Sukhov, Segre varieties and Lie symmetries, Math. Z. 238 (2001), no. 3, 483–492 https://doi.org/10.1007/s002090100262
- A. Sukhov, On transformations of analytic CR structures, Pub. Irma, Lille 2001, Vol. 56, no. II
- A. Sukhov, CR maps and point Lie transformations, Michigan Math. J. 50 (2002), 369–379 https://doi.org/10.1307/mmj/1028575739
- H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188 https://doi.org/10.1090/S0002-9947-1973-0321133-2
- A. Tresse, Determination des invariants ponctuels de l'equation differentielle du second ordre y''= !(x, y, y'), Hirzel, Leipzig, 1896
Cited by
- New extension phenomena for solutions of tangential Cauchy–Riemann equations vol.41, pp.6, 2016, https://doi.org/10.1080/03605302.2016.1180536
- Lie symmetries and CR geometry vol.154, pp.6, 2008, https://doi.org/10.1007/s10958-008-9201-5
- Characterization of the Newtonian Free Particle System in $m\geqslant 2$ Dependent Variables vol.92, pp.2, 2006, https://doi.org/10.1007/s10440-006-9064-z