$^{111}In$-표지 갈락토즈 접합 항체의 체내분포 및 간에서의 대사 : $^{111}In$-표지 항체와의 비교연구

Biodistribution and Hepatic Metabolism of Galactosylated $^{111}In-Antibody-Chelator$ Conjugates: Comparison with $^{111}In-Antibody-Chelator$ Conjugates

  • 곽동석 (경북대학교 의과대학 핵의학과교실) ;
  • 정규식 (경북대학교 수의과대학 수의학과) ;
  • 하정희 (영남대학교 의과대학 약리학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학과교실) ;
  • 이규보 (경북대학교 의과대학 핵의학과교실) ;
  • 백창흠 (미국국립보건원 임상센터 핵의학과) ;
  • 이재태 (경북대학교 의과대학 핵의학과교실)
  • Kwak, Dong-Suk (Department of Nuclear Medicine, Medical School, Veterinary College, Kyungpook National University) ;
  • Jeong, Kyu-Sik (Department of Veterinary Medicine Veterinary College, Kyungpook National University) ;
  • Ha, Jeoung-Hee (Department of Pharmacology, Yeoungnam University Medical School) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, Medical School, Veterinary College, Kyungpook National University) ;
  • Lee, Kyu-Bo (Department of Nuclear Medicine, Medical School, Veterinary College, Kyungpook National University) ;
  • Paik, Chang-H. (Department of Nuclear Medicine, Clinical Center, National Institutes of Health) ;
  • Lee, Jae-Tae (Department of Nuclear Medicine, Medical School, Veterinary College, Kyungpook National University)
  • 발행 : 2003.12.30

초록

목적: 종양의 진단과 치료에 널리 이용되고 있는 단클론항체를 수용체에 결합하는 수송체로 이용할 수 있는지에 대한 가능성 여부를 평가하기 위하여, 간의 asialoglycoprotein 수용체에 결합할 수 있는 갈락토즈접합 단클론항체를 $^{111}In$로 표지하여 체내에서의 분포와 간을 중심으로 한 체내대사를 분석하였고, 그 결과를 갈락토즈를 접합하지 않은 $^{111}In$ 표지 항체와 비교하였다. 재료 및 방법: 인체 림프 구성백혈병 세포에 대한 T101 단일클론항체를 cyclic DTPA dianhydrate(DTPA) 나 2-p-isothiocy-anatobenzyl-6-methyl-DTPA(IB4M) 로 접합하고 갈락토즈를 붙인후 $^{111}In$으로 표지하였다. 생쥐와 흰쥐에서 갈락토즈를 접합한 화합물과 접합하지 않은 화합물의 체내분포와 간대사를 비교분석하였다. 결과: $^{111}In$ 표지 T101항체와 갈락토즈 접합체는 투여량의 대부분이 10분 이내에 간에 섭취되었다. DTPA 접합자를 사용한 경우 IB4M 접합자를 사용한 경우보다 간에 오랫동안 저류되어 주사 후 44시간 간 섭취율이 각각 55%와 20% 였다. 이 기간동안의 DTPA화합물의 방사성 대사산물은 24%가 소변으로 17%가 대변으로 배설되어 유사하였으나 IB4M 화합물은 68%가 대변으로 8%가 소변으로 배설되어 배설경로에 차이가 있었다. 1B4M화합물을 주사후 3시간의 담즙과 간 현탁액을 HPLC로 분석한 결과 IgG와 저류시간(Rt)이 같은 첫 절정에 35%,유리 $^{111}In$과 유사한 절정의 Rt에 65%가 관찰되어 대사산물이 빠르게 답즙으로 배출됨을 알 수 있었고, DTPA 화합물 주사후 3시간 대사산물은 90%가 $^{111}In-DTPA$와 유사한 Rt의 절정을 보였다. 그러나 대변의 $^{111}In$ 의 축적량은 낮아 DTPA 접합화합물은 담도를 통한 빠른 배설이 일어나지 않음을 알 수 있었다. 결론: 단일클론항체에 갈락토즈를 접합한 경우보통의 항체에 비하여 간 섭취가 많고, 간에서의 대사가 촉진된다. 이 경우 사용되는 접합자의 선택에 따라서 대사산물의 성분이 달라지고 간에서의 제거도 차이가 있다. 이러한 대사의 차이점은 향후 종양세포나 조직의 탐색에 이용할 방사능 표지 항체의 제조에 응용될 수 있을 것이다.

Purpose: To evaluate the use of monoclonal antibody (MoAb) as a carrier of the receptor-binding ligand the receptor mediated uptake into liver and subsequent metabolism of $^{111}In-labeled$ galactosylated MoAb-chelator conjugates were investigated and compared with those of $^{111}In$ labeled MoAb. Materials and Methods : T101 MoAb, $IgG_2$ against human lymphocytic leukemic cell, conjugated with cyclic DTPA dianhydride (DTPA) or 2-p-isothiocyanatobenzyl-6-methyl-DTPA (1B4M) was galactosylated with 2-imino-2-methoxyethyl-1-thio-${\beta}$-D-galactose and then radiolabeled with $^{111}In$. Biodistribution and metabolism study was peformed with two $^{111}In-conjugates$ in mice and rats. Results: $^{111}In-labeled$ T101 and its galactosylated conjugates were taken to the liver by the time, mostly within 10 min. However DTPA conjugate was retained longer in the liver than the 1B4M conjugate (55% vs 20% of injected dose at 44 hr). During this time, the radiornetabolite of DTPA conjugate was excreted similarly into urine (24%) and feces (17%). The radiometabolite of 1B4M was excreted primarily into feces (68%) rather than urine (8%). Size exclusion HPLC analysis of the bile and supernatant of liver homogenate showed two peaks the first (35%) with the retention time (Rt) identical to IgG and the second (65%) with Rt similar to free $^{111}In$ at 3 hr post-injection for the 1B4M conjugate, indicating that the metabolite is rapidly excreted through the biliary system. in contrast to DTPA conjugate, the small $^{111}In-DTPA-like$ metabolite was the major radioindium component (90%) in the liver homogenate as early as 3 hour post-injection, but the cumulative radioindium activity in feces was only 17% at 44 hour, indicating that the metabolite from DTPA conjugate does not clear readily through the biliary tract. Conclusion: The galactosylation of the MoAb conjugates resulted in higher hepatocyte uptake and enhanced metabolism, compared to those without galactosylation. Metabolism of the MoAb-conjugates is different between compounds radiolabled with different chelators due to different characteristics of radiometabolites generated in the liver.

키워드

참고문헌

  1. Press OW, Rasey J. Principles of radioimmunotherapy for hematologists and oncologists. Semin Oncol. 2000;27(s):62-73
  2. Goldenberg DM, Larson SM. Radioimmun odetection in cancer identification. J Nucl Med 1992;33:803-14
  3. Jones PL, Brown BA, Sands H. Uptake and metabolism of $^111$In-labeled monoclonal antibody B6.2 by the rat liver. Cancer Res 1990;50(s); 852-56
  4. Hnatowich DJ, Griffin TW, Kosciuczyk C, Childs RL. Mattis JA, Shearly D, et al. Pharmacokinetics of an indium-111 labeled monoclonal antibody in cancer patients. Cli Sci 1985;26:849-58
  5. Kinuya S, Jeong JM, Garmestani K, Saga T, Camera L, Brechbiel MW, et al. Effect of metabolism on retention of In-111 labeled monoclonal antibody in liver and blood. J Nucl Med 1994;35:1851-7
  6. Haplern SE, Haindl W, Beauregard J, Hagen P, Clutter M, Amox D, et al. Scintigraphy with In-111-labeled monoclonal antibodies: kinetics, biodistribution, and tumor detection. Radiology 1988;168:529-36 https://doi.org/10.1148/radiology.168.2.3393677
  7. Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson DE, et al. Synthesis of 1-(p-isothiocyanatobenzyl) derivative of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inog Chem 1986;25:2772-81 https://doi.org/10.1021/ic00236a024
  8. Haseman MK, Goodwin DA, Meares CF, Kaminski MS, Wensel TG, MaCall MJ, et al. Metabolizable $^111$In-chelate conjugates anti-idiotype monoclonal antibody for radioimmunodetetion of lymphoma in mice. Eur J Nucl Med 1986;12: 455-60
  9. Paik CH, Yokoyama K, Reynolds JC, Quadri SM, Min CY, Shin SY, et al. Reduction of background activities by introduction of a diester linkage between antibody and a chelate in radioimmunodetection of tumors. J Nucl Med 1989;30:1693-701
  10. Yokoyama K, Sun B-F, Shuke N, Kinuya S, Miyaauchi T, Aburano T, et al. A noble chemical linker with hydrocarbon spacer for indium-111 labeled A7 monoclonal antibody. J Nucl Med 1993;5(s):28
  11. Deshpande SV, Subramanian R, McCall MJ, DeNardo SJ, DeNardo GL, Meares CF. Metabolism of indium chelates attached to monoclonal antibody: minimal transchelation of indium from benzyl-EDTA chelates in vivo. J Nucl Med 1990;31:218-224
  12. Paik CH, Sood VK, Le N, Cioloca L, Carrasquillo JA, Reynolds JC, et al. Radiolabeled products in rat liver and serum after administration of antibody-amide- DTPA-Indium -111. Int J Radia Appl Instrum Part 1992;5:517-22
  13. Duncan JR, Welch MJ. Intracellular metabolism of In-111 DTPA labeled receptor targeted proteins. J Nucl Med 1993;34:1728-38
  14. Arano Y, Mukai T, Uezono T, Wakisaka K, Motonari H, Akizawa H, et al. A biological method to evaluate bifunctional chelating agents to label antibodies with metallic radionuclides. J Nucl Med 1994;35:890-8
  15. Jones AL, Renston RH, Burwen SJ. Uptake and intracellular disposition of plasma-derived proteins and apoproteins by hepatocytes. Prog Liver Dis 1982;7:51-69
  16. Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 1974;41:99-128
  17. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Ann Rev Biochem 1982;51:531-54 https://doi.org/10.1146/annurev.bi.51.070182.002531
  18. Pittman RC, Carew TE, Glass CK, Green SR, Taylor CA Jr, Attie AD. A radioiodinated, intracellularly trapped ligand for determining the site of plasma protein degradation in vivo. Biochem J 1983;212:791-800 https://doi.org/10.1042/bj2120791
  19. Royston I, Majda JA, Baird SM, Meserve BL, Griffiths JC. Human T-cell antigens defined by monoclonal antibodies: The 65,000 dalton antigen of T-cells (T65) is also found on chronic lymphocytic leukemia cells bearing surface immunoglobulin. J Immunol 1980;125:725-31
  20. Lee YC. Stowell CP, Krantz MJ. 2-imino-2- methoxyethyl 1-thioglycodsides: new reagents for attaching sugars to proteins. Biochemistry 1976;15:3956-63
  21. Stowell CP, Lee YC. Preparation of some new neoglycoproteins by aminidation of bovine serum albumin using 2-imino-2-methoxyetyl 1-thioglycosides. Biochemistry 1980;19:4899-904 https://doi.org/10.1021/bi00562a030
  22. Stowell CP, Lee RT, Lee YC. Studies on the specificity of rabbit hepatic carbohydrate-binding protein using neoglycoproteins. Biochemistry 1980;19: 4904-8 https://doi.org/10.1021/bi00562a031
  23. Seglen PO. Preparation of rat liver cells. II. Effects of ions and chelators on tissue dispersion. Exp Cell Res 1973;76:25-30
  24. Sands H, Jones PL. Methods for the study of the metabolism of radiolabeled monoclonal antibodies by liver and tumor. J Nucl Med 1987;28:390-8
  25. Lee J. Quantitative evaluation of liver function with hepatic receptor scintigraphy using Tc-99m galactosylated serum albumin. Korean J Nucl Med 1998;32:305-13
  26. Stadalnik RC, Kudo M, Eckelman WC, Vera DR. In vivo functional imaging using receptor-binding radiopharmaceuticals. Technetium-99m- galactosylneoglycoalbumin as a model. Invest Radiol 1993; 28:64-70 https://doi.org/10.1097/00004424-199301000-00018
  27. Mattes MJ. Biodistribution of antibodies after intraperitoneal or intravenous injection and effect of carbohydrate modifications. J Natl Cancer Inst 1987;79:855-63
  28. Sharma SK, Bagshawe KD, Burke PJ, Boden JA, Rogers GT, Springer CJ, et al. Galactosylated antibodies and antibody-enzyme conjugates in antibody-directed enzyme prodrug therapy. Cancer 1994;73(s):1114-20 https://doi.org/10.1002/1097-0142(19940201)73:3+<1114::AID-CNCR2820731352>3.0.CO;2-L
  29. Ong GL, Ettenson D, Sharkey RM, Marks A, Baumal R, Goldenberg DM, et al. Galactose -conjugated antibodies in cancer therapy: properties and principles of action. Cancer Res 1991;51:1619-26
  30. Franano FN, Edwards WB, Welch MJ, Duncan JR. Metabolism of receptor targeted $^111$In-DTPA-glycoproteins: identification of $^111$In-DTPA-$\varepsilon$-lysine as the primary metabolic and excretory product. Nucl Med Biol 1994;21:1023-34 https://doi.org/10.1016/0969-8051(94)90174-0
  31. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest 1970;49:673-80 https://doi.org/10.1172/JCI106279
  32. Henderson LA, Baynes JW, Thorpe SR. Identification of the sites of IgG catabolism in the rat. Arch Biochem Biophys 1982;215:1-11 https://doi.org/10.1016/0003-9861(82)90272-7
  33. Gore S, Morris AI, Gilmore IT, Maltby PJ, Thornback JR, Billington D. Differences in the intracellular processing of the radiolabel following the uptake of iodine-125- and technetium-99m -neogalactosyl albumin by the isolated perfused rat liver. J Nucl Med 1991;32:506-11
  34. Sands H. Experimental studies of radioimmunodetection of cancer : an overview. Cancer Res 1990;50(s):809-13
  35. Beatty JD, Beatty BG, O'conner-Tressel M, Do T, Paxton RJ. Mechanisms of tissue uptake and metabolism of radiolabeled antibody - role of antigen:antibody complex formation. Cancer Res 1990;50(s):840-5
  36. McGraw TE, Maxfield FR. Internalization and sorting of macromolecules: endocytosis. In: Juliano RL, eds. Targeted delivery. Berlin:Springer -Verlag, 1991:11-41
  37. Coleman R. Biochemistry of bile secretion. Biochem J 1987;244:249-61 https://doi.org/10.1042/bj2440249
  38. LaBadie JH, Chapman KP, Aronson NN Jr. Glycoprotein catabolism in rat liver: lysosomal digestion of iodinated asialo-fetuin. Biochem J 1975;152:271-9 https://doi.org/10.1042/bj1520271
  39. Wileman T, Harding C, Stahl P. Receptor-mediated endocytosis. Biochem J 1985;232:1-14 https://doi.org/10.1042/bj2320001
  40. Wall DA, Wilson G, Hubbard AL. The galactose-specific recognition system of mammalian liver. The route of ligand internalization of rat hepatocytes. Cell 1980;21:79-93 https://doi.org/10.1016/0092-8674(80)90116-6
  41. LaRusso NF. Proteins in bile: how they get there and what they do. Am J Physiol 1984;247 199-205
  42. Ogawara K, Nishikawa M, Takakura Y, Hashida M. Pharmacokinetic analysis of hepatic uptake of galactosylated bovine serum albumin in a perfused rat liver. J Control Release 1998;50:309-17 https://doi.org/10.1016/S0168-3659(97)00157-0
  43. Klaassen CD, Watkins JB III. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 1984;36:1-67
  44. Motta-Hennessy C, Sharkey RM, Goldenberg DM. Metabolism of indium-111-labeled murine monoclonal antibody in tumor and normal tissue of the athymic mouse. J Nucl Med 1990;31:1510-19
  45. Boyle CC, Paine AJ, Mather SJ. The mechanism of hepatic uptake of a radiolabeled monoclonal antibody. Int J Cancer 1992;50:912-7 https://doi.org/10.1002/ijc.2910500616
  46. Franssen EJ. Understanding intracellular metabolism: a key to the rational design for targeting drugs and radionuclides. J Nucl Med 1994;35 :1559-60
  47. Schiff JM, Fisher MM, Underdown BJ. Receptormediated biliary transport of immunogl obulin A and asialoglycoprotein: sorting and missorting of ligands revealed by two radiolabeled methods. J Cell Biol 1984;98:79-89 https://doi.org/10.1083/jcb.98.1.79
  48. Bridges K, Harford J, Ashwell G, Klausner RD. Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes. Proc Natl Acad Sci USA 1982;79:350-4 https://doi.org/10.1073/pnas.79.2.350
  49. Gregoriadis G, Morell AG, Sternlieb I, Scheinberg IH. Catabolism of desialylated ceruloplasmin in the liver. J Biol Chem 1970;245:5833-7
  50. Mattes MJ, Griffiths GL, Diril H, Goldenberg DM, Ong GL, Shih LB. Processing of antibodyradioisotope conjugates after binding to the surface of the tumor cells. Cancer 1994;73(s):787-93 https://doi.org/10.1002/1097-0142(19940201)73:3+<787::AID-CNCR2820731307>3.0.CO;2-5
  51. Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, et al. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med 1994;35:899-908