마우스 CT26 종양에서 Tc-99m 표지 플루란유도체의 저류 특성

Retention Characteristics of Tc-99m-Pullulan-Derivatives in CT26 Tumor of Mice

  • 허영준 (전남대학교병원 핵의학과) ;
  • 송호천 (전남대학교병원 핵의학과) ;
  • 범희승 (전남대학교병원 핵의학과) ;
  • 나건 (조선대학교 약학대학) ;
  • 김성민 (충남대학교병원 핵의학과)
  • Heo, Young-Jun (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University Hospital) ;
  • Na, Kun (Department of College of Pharmacy, Chosun University) ;
  • Kim, Seong-Min (Department of Nuclear Medicine, Chongnam National University Hospital)
  • 발행 : 2003.12.30

초록

배경: 플루란유도체(PD)로 만든 나노입자는 이온강도에 따라 뭉치는 수용성겔이다. 본 연구에서는 PD가 방사성핵종을 종양 조직 내에 효과적으로 머무르게 할 수 있는지 알아보고자 하였다. 방법: 네 종류의 PD 즉, pullulan acetate (PA), succinylated PA(SPA), PA-DTPA와 SPA-DTPA 결합체를 합성한 후 테크네슘-99m(Tc-99m)으로 표지하고 표지효율을 측정하였다. Balb/c 생쥐에 CT26 대장암세포를 피하주사하고 2주 후에 Tc-99m 표지 PD(Tc-PD)를 종양 내에 주사하였다. 주사직후와 30분, 1, 2, 4, 12시간 후에 감마카메라로 생쥐를 촬영하여 종양 내의 Tc-PD의 저류율을 측정하였다. 종양크기에 따라 각각의 암의 직경이 5 mm와 10 mm일 때 Tc-99mpertechnetate와 Tc-99m 표지 PA를 종양 내 주사하여, 주사 직후 1시간 동적영상을 얻고, 1시간, 2시간, 3시간 그리고 4시간 후에 감마카메라로 생쥐를 촬영하여 종양 내의 저류율을 측정하였다. 결과 PA, SPA, PA-DTPA 및 SPA-DTPA의 Tc-99m 표지율은 각각 $94.5{\pm}5.9%,\;97.8{\pm}3.5%\;94.2{\pm}3.8%,\;92.5{\pm}6.2%$ 로 서로간에 유의한 차이가 없었다 (p>0.05). Tc-99m-PA와 Tc-99m-PA-DTPA의 %RR은 대조군에 비해 의의있게 높았으나(p<0.05), SPA는 4시간까지 그리고 SP-DTPA는 2시간까지만 대조군보다 %RR이 높았을 뿐 그 이후에는 대조군과 유사한 %RR을 보였다. 종양의 크기에 따라 PA군에서 측정한 저류율은 대조군보다는 의의있게 높았으나, 직경이 5 mm와 10 mm일 때의 저류율 간에는 차이가 없었다. 결론: PD가 종양 조직 내에 저류될 수 있음을 알았으며, 종양 크기에 따른 저류율의 차이는 없었다. 향후 PD와 치료용 방사성핵종을 이용한 종양 치료에 활용할 가능성을 기대할 수 있을 것으로 사료되었다.

Objective: Pullulan derivatives (PD) can be used to make self-assembled hydrogel nanoparticles which are responsive to ionic strength. The aim of this study is to evaluate the potential of PD as a retaining carrier of radioisotope inside tumors. Materials and Methods: Four types of PD were evaluated which included pullulan acetate (PA), succinylated PA (SPA), PA-DTPA and SPA-DTPA conjugates. They were radiolabeled with Tc-99m. Labelling efficiencies were determined at 30 min, 1, 2, 4 and 12 hours after radiolabeling. CT-25 colon cancer cells were subcutaneously injected into Balb/c mice. After 2 weeks of subcutaneous injection, Tc-99m-labelled PD (Tc-99m-PD) were injected into the tumors. Whole body images of mice were obtained at 30 min, 1, 2, and 12 hr after intratumoral injection. All twenty mice were grouped into four groups by largest diameter; control A (largest diameter = 5 mm, n = 5), control B (largest diameter = 10 mm, n = 5), pullulan A (largest diameter = 5 mm, n = 5), pllulan B (largest diameter = 10 mm, n = 5). Dynamic images were obtained for 1 hour after intratumoral injection. Static images were obtained at 1 hr, 2 hr, 3 hr and 4 hr after intratumoral injection with Tc-99m pertechnetate and Tc-99m-PA. Target-to-background ratios and retention rates were calculated. Results: Labeling efficiencies of PA, SPA, PA-DTPA and SPA-DTPA were $94.5{\pm}5.9%,\;97.8{\pm}3.5%\;94.2{\pm}3.8%,\;and\;92.5{\pm}6.2%$, respectively (p>0.05). Percent retention rates (%RR) of PA and PA-DTPA were significantly higher than those of control, however, those of SP-DTPA and SPA became similar to control at 4 and 12 hr, respectively. %RR of pullulan A and pullulan B at 1, 4 and 8 hr is significantly higher than that of control (p < 0.05). However, %RR between pullulan A and pullulan B were similar. Conclusion: The lonic strength dependent PD-nanoparticles are retained in the tumor. No difference of %RR according to tumor size was noted. Therapeutic application of PD labelled with beta- or alpha- emitting radionuclides can be expected.

키워드

참고문헌

  1. 이기영. 조종수 역. 생분해성 고분자. 광주, 전남대학 교 출판부, 1998. p. 105-113
  2. Yeun S. Japanase develop starch-derived palstic. Chem Eng News 1973:24;40-4
  3. 송호천, 허영준, 신찬호, 나건, 범희승, 이창문, 이기 영. CT-26 대장암 마우스모델에서 종양 내 주입된 Rhenium-188 표지 생분해성 풀루란 나노입자의 치 료효과(Abstract). 대한핵의학회지 2003;37:82P
  4. K. Na, Y.H. Bac. Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: Characterization, aggregation and adriamycin release in vitro. Phramacol. Res. 2002;19:681-7
  5. Yeun S. Pullulan and its applications. Process Biochem 1974:22;7-15
  6. Sakano Y, Masuda N, Kobayashi T. Production of pullulan from starch substrate. Agri Bio Chem 1973:35;971-82
  7. Ohta K, Mitsuyuki H, Miyamoyo H, Kwawahara K. Prolonged dissolution of tablets prepared from pullulan mixed konjac mannan. Kobunshi Rondunchu 1985:42;817-22
  8. Buneel D, Schact E. Chemical modification of pullulans: 1. Periodate oxidation. Polymer. 1993:34; 2628-32
  9. Buneel D, Schact E. Chemical modification of pullulans: 2. Chloroformate activation. Polymer. 1993:34;2633-40
  10. Li ZC, Fu F, Hwang MZ, Lian N. Functionalization of C.A.B for pro-drug delivery systems. J Macromol Sci-Chem, 1988:25;1487-92
  11. Brandrup J, Immergut EH. Polymerhandbook, Chap.3, 2nd Ed., John Wiley & Sons, New York, USA. 1975
  12. Boam JM, Jacques M, LeDuy A. Pullulans from peat hydrate fermentation kinetics. Biotechnol Bioeng 1984:30;463-70
  13. Dansereau NR. Clinical production of pharmaceutical grade Tc-99m dextran 70 for lymphoscintigraphy. Clin Nucl Med 2000:25; 179-81
  14. Saha GB. Fundamentals of nuclear pharmacy. 3th ed. New York: Springer; 1998. p.80-111