DOI QR코드

DOI QR Code

Eigenvalue Branches and Flutter Modes of a Cantilevered Pipe Conveying Fluid and Having a Tip Mass

말단질량을 갖는 외팔 송수관의 고유치 분기와 플러터 모드

  • 류봉조 (한밭대학교 생산융합기술연구소) ;
  • 류시웅 (충남대학교 대학원 기계공학과) ;
  • 이종원 (한밭대학교 기계공학부)
  • Published : 2003.12.01

Abstract

The paper describes the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration. The critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place. are definitely determined. Also, in the case of haying internal damping, the critical tip mass ratios, at which the consistency between eigenvalue braches and quasi-modes occurs. are thoroughly obtained.

Keywords

References

  1. Benjamin. T. B.. 1961. 'Dynamics of a System of Articulated Pipes Conveying Fluid (I. Theory).' Proceedings of the Royal Society, Series A. Vol. 261. pp. 457-486 https://doi.org/10.1098/rspa.1961.0090
  2. Benjamin. T. B.. 1961. 'Dynamics of a System of Articulated Pipes Conveying Fluid (Il.Experiment).' Proceedings of the Royal Society. Series A Vol. 261. pp. 487-499 https://doi.org/10.1098/rspa.1961.0091
  3. Gregory. R. W. and Paidoussis. M. P.. 1966. 'Unstable Oscillation of Tubular Cantilevers Conveying Fluid (I. Theory).' Proceedings of the Royal Society (London). Series A Vol. 293. pp. 512-527 https://doi.org/10.1098/rspa.1966.0187
  4. Gregory. R. W. and Paidoussis, M. P.. 1966. 'Unstable Oscillation of Tubular Cantilevers Conveying Fluid (II. Experiment).' Proceedings of the Royal Society (London). Series A. Vol. 293. pp. 528- 542 https://doi.org/10.1098/rspa.1966.0188
  5. Hill. J. L. and Swanson. C. P.. 1970. 'Effects of Lumped Masses on the Stability of Fluid Conveying Tube.' Journal of Applied Mechanics. Vol. 37. pp. 494-497 https://doi.org/10.1115/1.3408533
  6. Sugiyama. Y.. Tanaka. Y.. Kishi. T. and Kawagoe, H.. 1985. 'Effect of a Spring Support on the Stability of Pipes Conveying Fluid." Journal of Sound and Vibration. Vol. 100. pp. 257- 270 https://doi.org/10.1016/0022-460X(85)90419-5
  7. Sugiyama. Y.. Kumagai. Y.. Kishi. T. andH.. 1986. 'Studies on Stability of Pipes Conveying Fluid(The Effect of a Lumped Mass and Damping).' Bulletin of JSME. Vol.29. pp. 929-934 https://doi.org/10.1299/jsme1958.29.929
  8. 류봉조, 정승호, 강용철. 1998. '유체유동을 갖는 외팔 송수관의 동적 안정성과 진동제어에 관한 연구.' 한국소음진동공학회논문집. 제 8 권. 제 1 호. pp.171-179
  9. Paidoussis. M. P., 1998. 'Fluid-structure Interactions Slender Structures and Axial Flow.' Academic Press. Vol. 1. pp. 196-276
  10. Ryu, S. U.. Sugiyama. Y. and Ryu. B. J.. 2002. 'Eigenvalue Branches and Modes for Flutter of Cantilevered Pipes Conveying Fluid.' Computers and Structures. Vol. 80. pp. 1231-1241 https://doi.org/10.1016/S0045-7949(02)00083-4
  11. Seyranian. A P.. 1994. 'Collision of Eigenvalues in Linear Oscillatory Systems.' Journal of Applied Mathematics and Mechanics. Vol. 58. pp. 805-813 https://doi.org/10.1016/0021-8928(94)90005-1
  12. Semler. C.. Alighanbari. H. and Paidoussis. M. P.. 1998. 'A Physical Explanation of the Destabilizing Effect of Damping.' Journal of Applied Mechanics. Vol. 65. pp. 642-648 https://doi.org/10.1115/1.2789106