References
- Ajarem, J. S. andAhmad, M., Prenatal nicotine exposure modifies behavior of mice through early development. Pharmacol. Biochem. Behav., 59, 313-318 (1993)
- Akaike, A., Tamura, Y, Yokota, T, Shimohama, S., and Kimura J., Nicotine-induced protection of cultured cortical neurons against N-methyl-O-aspartate receptor-mediated glutamate cytotoxicity. Brain Res., 644, 181-187 (1994) https://doi.org/10.1016/0006-8993(94)91678-0
- Aramakis, V. B. and Metherate, R., Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J. Neurosci., 18, 8485-8495 (1998)
- Arriza, J. L., Fairman, W. A., Wadiche, J. I., Murdoch, G. H., Kavanaugh, M. P., and Amara, S. G., Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci., 14, 5559-5569 (1994)
- Birtwistle, J. and Hall K., Does nicotinehave beneficial effectsin the treatment of certain diseases? Br. J. Nurs., 5, 1195-1202 (1997)
- Borlongan, C. V., Shytle, R. D., Ross, S. D., Shimizu, T., Freeman, T. B., Cahill, D. W., and Sanberg, P. R., (-)-Nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp. Neurology, 136, 261-265 (1995) https://doi.org/10.1006/exnr.1995.1103
- Bristol, L. A. and Rothstein, J. D., Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann. Neurol., 39, 676-679 (1996) https://doi.org/10.1002/ana.410390519
- Casado, M., Bendahan, A., Zafra, F., Danbolt, N. C., Aragon, C., Gimenez, C., and Kanner, B.I., Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem., 268, 27313-27317 (1993)
- Colling ridge, G. L. and Lester R. A. J., Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev., 41,143-210 (1989)
- Conradt, M. and Stoffel, W., Inhibition of the high-affinity brain glutamate transporter GLAST via direct phosphorylation. J. Neurochem., 68, 1244-1251 (1997) https://doi.org/10.1046/j.1471-4159.1997.68031244.x
- Fairman, W. A., Vandenverg, R. J., Arriza, J. L., Kavanaugh, M. P., and Amara, S. G., An excitatory amino acid transporter with properties of a ligand-gated chloride channel. Nature, 375, 599-603 (1995) https://doi.org/10.1038/375599a0
- Fung, Y K., Schmid, M. J., Anderson, T. M., and Lau Y, Effects of nicotine withdrawal on central dopaminergic systems. Pharmacol. Biochem. Behav., 53, 635-640 (1996) https://doi.org/10.1016/0091-3057(95)02063-2
- Furuta, A., Rothstein, J. D., and Martin, L. J., Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci., 17, 8363-8375 (1997)
- Garcia-Munoz, M., Patino, P, Young, S. J., and Groves P. M., Effects of nicotine on dopaminergic nigrostriatal axons requires stimulation of presynaptic glutamatergic receptors. J. Pharmacol. Exp. Ther., 277, 1685-1693 (1996)
- Gattu, M., Pauly, J. R., Boss, K. L., Summers, J. B., and Buccafusco J. J., Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. Brain Res., 771, 89-103 (1997) https://doi.org/10.1016/S0006-8993(97)00793-2
- Gegelashvili, G. and Schousboe, A., High affinity glutamate transporters: Regulation of expression and activity. J. Pharmacol. Exp. Ther., 52, 6-15 (1997)
- Hazell, A. S., Rao, K. V. R., Danbolt, N. C., Pow, D. V., and Butterworth, R. F., Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernickes encepholopathy. J. Neurochem., 78, 560-568 (2001) https://doi.org/10.1046/j.1471-4159.2001.00436.x
- Kondo, K., Hashimoto, H., Kitanaka, J., Sawada, M., Suzumura, A., Marunouchi, T., and Baba, A., Expression of glutamate transporters in cultured glial cells. Neurosci. Lett., 188, 140-142 (1995) https://doi.org/10.1016/0304-3940(95)11408-O
- Levy, L. M., Lehre, K. P, Walaas, S. I., Storm-Mathison, J., and Danbolt, N. C., Down-regulation of glial glutamate transporters after glutamatergic denervation in the rat brain. Eur. J. Neurosci., 7, 2036-2041 (1995) https://doi.org/10.1111/j.1460-9568.1995.tb00626.x
-
Li, X., Zoli, M., Finnman, U., NeNovere, N., Changeux, J., and Fuxe, K., A single (-)-nicotine injection causes change with a time delay in the affinity of striatal
$D_2$ receptors for antagonist, but not for agonist, nor in the$D_2$ receptor mRNA levels in the rat substantia nigra. Brain Res., 678, 157-167 (1995) - Lim, D. K. and Kim H.S., Changes in the glutamate release and uptake of cerebellar cells in perinatally nicotine-exposed rat pups. Neurochem. Res., 26, 1119-1125 (2001) https://doi.org/10.1023/A:1012318805916
- Lim, D. K., Park, S. H., and Choi, W. J., Subacute nicotine D. K. Lim and H. S. Kim exposure in cultured cerebellar cells increased the release and uptake of glutamate. Arch. Pharm. Res., 23, 488-494 (2000) https://doi.org/10.1007/BF02976578
- LoPachin, R. M. and Aschner, M., Glial-neuronal interactions: Relevance to neurotoxic mechanisms. Toxicol. Appli. Pharmacol., 118, 141-158 (1993) https://doi.org/10.1006/taap.1993.1020
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275 (1951)
- Martin, B. R., Nicotine receptors in the central nervous system. In Conn, P. M. (Ed), The receptors. Academic Press, New York, pp. 393-415 (1986)
- McCaslin, P P. and Morgan, W. W., Cultured cerebellar cells as in vitro model of excitatory amino acid receptor function. Brain Res., 417, 380-384 (1987) https://doi.org/10.1016/0006-8993(87)90469-0
- Meldrum, B. and Garthwaite, J., Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci., 11, 379-387 (1990) https://doi.org/10.1016/0165-6147(90)90184-A
- Mennerick, S. and Zorumski, C. F., Glial contribution to excitatory neurotransmission in cultured hippocampal cells. Nature, 368, 59-62 (1994) https://doi.org/10.1038/368059a0
- Nakayama, H., Numakawa, T., Ikeuchi, T., and Hatanaka, H., Nicotine-induced phosphorylation of extracellual signalregulated protein kinase and CREB in PC12h cells. J. Neurochem., 79, 489-498 (2001) https://doi.org/10.1046/j.1471-4159.2001.00602.x
- Newman, M. B., Shytle, R. D., and Sanberg, P. R., Locomotor behavioral effects of prenatal and postnatal nicotine exposure in rat offspring. Behav. Pharmacol., 10, 700-706 (1999)
- Nicholis, D. and Attwell, D., The release and uptake of excitatory amino acids. Trends Pharmacol. Sci., 11, 462-468 (1990) https://doi.org/10.1016/0165-6147(90)90129-V
- Nordberg, A., Zhang, X., Fredriksson, A., and Eriksson, P., Neonatal nicotine exposure induces permanent changes in brain nicotine receptors and behaviour in adult mice. Dev. Brain Res., 63, 201-207 (1991) https://doi.org/10.1016/0165-3806(91)90079-X
- Perez De La Mora, M., Mendez-Franco, J., Salceda, R., Aguirre, J. A., and Fuxe, K., Neurochemical effects of nicotine on glutamate and GABA mechanisms in the rat brain. Acta. Physiol. Scand., 141, 241-250 (1991) https://doi.org/10.1111/j.1748-1716.1991.tb09074.x
- Rao, V. L. R., Rao, A. M., Dogan, A., Bowen, K. K., Hatcher, J., Rothstein, J. D., and Demsey, R. J., Glial glutamate transporter GLT-1 down-regulation procedes delayed neuronal death in gerbril hippocampus following transient global cerebral ischemia. Neuchem. Int., 36, 531-537 (2000)
- Rop, P. P., Grimaldi, F., Oddoze, C., and Viala, A., Determination of nicotine and its main metabolites in urine by high performance liquid chromatography. J. Chromatogr., 612, 302-309 (1993) https://doi.org/10.1016/0378-4347(93)80177-6
- Roth, R. H., Elsworth, J. D., and Morrow, B. A., Prenatal nicotine exposure disrupts short-term memory in spontaneous object recognition task. Soc. Neurosci. Abs., 26, Part1, 1095 (2000)
- Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M., Wang, Y., Schinke, J. P., and Welty, D. F., Knockout of glutamate transporters reveals a major role for astroglia transport in exctotoxicity and clearance of glutamate. Neuron, 16, 675-686 (1996) https://doi.org/10.1016/S0896-6273(00)80086-0
- Seal, R P. and Amara, S. G., Excitatory amino acid transporters: A farnity in flux. Annu. Rev. Pharmacol. Toxicol., 39, 431-456 (1993) https://doi.org/10.1146/annurev.pharmtox.39.1.431
- Sutheland, M. L., Delaney, T. A., and Noebel, J. L., Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J. Neurosci., 16, 2191-2207 (1996)
- Swanson, R. A., Liu, J., Miller, J. M., Rothstein, J. D., Farrell, K., Stein, E,. A., and Longuemare, M. C., Neuronal regulation of glutemate transporter subtype expression in astrocytes. J. Neurosci., 17, 932-940 (1997)
-
Tang, B., Hanna, S. T., and wang, R., Effects of nicotine on
$K^{+}$ channel currents in vascular smooth muscle cells rat tail arteies, Eur. J. Pharmacol., 364, 247-254 (1999) https://doi.org/10.1016/S0014-2999(98)00833-4 - Thomas, J. D., Garrison, M. E., Slawecki, C. J., Ehlers, C. L., and Riley, E. P., Nicotine exposure during the neonatal brain growth spurt produces hyperactivity in preweanling rats. Neurotoxicol. Teratol., 22, 695-701 (2000) https://doi.org/10.1016/S0892-0362(00)00096-9
-
Tizabi, Y, Russell, L. T, Nespor, S. M., Perry, D. C., and Grunberg, N. E., Prenatal nicotine exposure: Effects on locomotor activity and central [
$^{125}I$ ]$\alpha$ -BT binding in rats. Pharmacol. Biochem. Behav., 66, 495-500 (2000) https://doi.org/10.1016/S0091-3057(00)00171-4 - Trotti, D., Rizzini, B. L., Rossi, D., Haugeto, O., Racagni, G., Danbolt, N. C., and Volterra, A., Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur. J. Neurosci., 9, 1236-1243 (1997) https://doi.org/10.1111/j.1460-9568.1997.tb01478.x
- Tzavara, E. T, Monory, K., Hanoune, J., and Nomikos, G. G., Nicotine withdrawal syndrome: behabioural distress and selective up-regulation of the cyclic AMP pathway in the amygdala. Eur. J. Neurosci., 16, 149-153 (2002) https://doi.org/10.1046/j.1460-9568.2002.02061.x
- Zhang, X., Gong, Z., and Nordberg, A, Effects of chronic treatment with (+)- and (-)-nicotine on nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors in rat brain. Brain Res., 644, 32-39 (1994) https://doi.org/10.1016/0006-8993(94)90343-3