Investigation of Oxygen Incorporation in AlGaN/GaN Heterostructures

  • Jang, Ho-Won (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH)) ;
  • Baik, Jeong-Min (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH)) ;
  • Lee, Jong-Lam (Department of Materials Science and Engineering, Pohang University of Science and Technology(POSTECH)) ;
  • Shin, Hyun-Joon (Beamline Department, Pohang University of Science and Technology(POSTECH)) ;
  • Lee, Jung-Hee (School of Electronic Engineering and Computer Science, Kyungpook National University)
  • Published : 2003.06.01

Abstract

Direct evidence on the incorporation of high concentration of oxygen into undoped AlGaN layers for the AlGaN/GaN heterostuctures is provided by scanning photoemission microscopy using synchrotron radiation. In-situ annealing at $1000^{\circ}C$ resulted in a significant increase in the oxygen concentration at the AlGaN surface due to the predominant formation of Al-O bonds. The oxygen incorporation into the AlGaN layers resulting from the high reactivity of Al to oxygen can enhance the tunneling-assisted transport of electrons at the metal/AlGaN interface, leading to the reduction of the Schottky barrier height and the increase of the sheet carrier concentration near the AlGaN/GaN interface.

Keywords

References

  1. O. Ambacher et al., J. Phys.: Condens. Matter 14, 3399 (2002) https://doi.org/10.1088/0953-8984/14/13/302
  2. C.R.Abernathy et al., J. Semicond. Tech. Sci. 3, 13 (2003)
  3. P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove, and J. Redwing, Electron. Lett. 33, 1230 (1997) https://doi.org/10.1049/el:19970843
  4. I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, J. Appl. Phys. 86, 4520 (1999) https://doi.org/10.1063/1.371396
  5. J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. Denbaas. J. S. Speck, and U. K. Mishra, Appl. Phys. Lett. 77, 250 (2000) https://doi.org/10.1063/1.126940
  6. H. W. Jang, C. M. Jeon, K. H. Kim, J. K. Kim, S.-B. Bae, J. -H. Lee, J. W. Choi, and J.-L. Lee, Appl. Phys, Lett. 81, 1249 (2002) https://doi.org/10.1063/1.1501162
  7. K. A. Prior, G. J. Davies, and R. Heckingbottom, J. Cryst. Growth 66, 55 (1984) https://doi.org/10.1016/0022-0248(84)90076-9
  8. C. Amano, K. Ando, and M. Yamaguchi, J. Appl. Phys. 63, 2853 (1988) https://doi.org/10.1063/1.340938
  9. J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, Appl. Phys. Lett. 73, 2953 (1998) https://doi.org/10.1063/1.122641
  10. T. Mattila and R. M. Nieminen, Phys. Rev. B 55, 9571 (1997) https://doi.org/10.1103/PhysRevB.55.9571
  11. I. Shalish, Y. Shapira, L. Burstein, and J. Salzman, J. Appl. Phys. 89, 390 (2001) https://doi.org/10.1063/1.1330553
  12. J. F. Mouler, W. F. Strickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy(Perkin-Elmer, Eden Prairie, MN, 1992)
  13. H. W. Jang, J. K. Kim, J.-L. Lee, J. Schroeder, and T. Sands, Appl. Phys. Lett. 82, 580 (2003) https://doi.org/10.1063/1.1537515
  14. S. D. Walter, J. M. DeLucca, S. E. Mohney, R. S. Kern, and C. P. Cuo, Thin Solid Films 371, 153 (2000) https://doi.org/10.1016/S0040-6090(00)00984-6
  15. B. Ihsan, Thermochemical Data of Pure Substances (VCH Publishers, New York, NY, 1987)
  16. C. R. Elsass, T. Mates, B. Heying, C. Poblenz, P. Fini, P. M. Petroff, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 77, 3167 (2000) https://doi.org/10.1063/1.1325398
  17. W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68, 3144 (1996) https://doi.org/10.1063/1.115805
  18. O. Ambacher et al. J. Appl. Phys. 87, 334 (2000) https://doi.org/10.1063/1.371866