Effect on 4H-SiC Schottky Rectifiers of Ar Discharges Generated in A Planar Inductively Coupled Plasma Source

  • Jung, P.G. (Department of Optical Engineering, Inje University) ;
  • Lim, W.T. (Department of Optical Engineering, Inje University) ;
  • Cho, G.S. (Department of Optical Engineering, Inje University) ;
  • Jeon, M.H. (Department of Optical Engineering, Inje University) ;
  • Lee, J.W. (Department of Optical Engineering, Inje University) ;
  • Nigam, S. (Department of Chemical Engineering University of Florida) ;
  • Ren, F. (Department of Chemical Engineering University of Florida) ;
  • Chung, G.Y. (Sterling Semiconductor) ;
  • Macmillan, M.F. (Sterling Semiconductor) ;
  • Pearton, S.J. (Department of Materials Sciences and Engineering University of Florida)
  • Published : 2003.03.01

Abstract

4H-SiC Schottky rectifiers were exposed to pure Ar discharges in a planar coil Inductively Coupled Plasma system, as a function of source power, of chuck power and process pressure. The reverse breakdown voltage ($V_B$) decreased as a result of plasma exposure due to the creation of surface defects associated with the ion bombardment. The magnitude of the decrease was a function of both ion flux and ion energy. The forward turn-on voltage ($V_F$), on-state resistance ($R_{ON}$) and diode ideality factor (n) all increased after plasma exposure. The changes in all of the rectifier parameters were minimized at low power, high pressure plasma conditions.

Keywords

References

  1. N. V. Dyakonova, P.A Ivanov, V.A. Kozlov, M.E. Levinshtein, J.W. Palmour, S.L. Rumyantsev and R. Singh, IEEE Trans. Electron Dev. 46, 2188 (1999) https://doi.org/10.1109/16.796295
  2. D. Alok and B.J. Baliga, IEEE Electron Dev. Lett. 44, 1013 (1997) https://doi.org/10.1109/16.585559
  3. P.G. Neudeck, J. Electron. Mater. 24, 283 (1995) https://doi.org/10.1007/BF02659688
  4. M.G. Spencer, J. Palmour and C. Carter, IEEE Trans. Electron. Dev. 49, 940 (2002) https://doi.org/10.1109/16.998608
  5. J.B. Casady, A.K. Agarwal, S. Seshadri, R.R. Siergiej, L.B. Rowland, M.F. MacMillan, D.C. Sheridan, P.A. Sanger and C.D. Brandt, Solid-State Electron. 42, 2165 (1998) https://doi.org/10.1016/S0038-1101(98)00212-3
  6. M. Trivedi and K. Shenai, J. Appl. Phys. 85, 6889 (1999) https://doi.org/10.1063/1.370208
  7. D. Peters, R. Schoener, K.H. Holzein and P. Friedrichs, Appl. Phys. Lett. 71 2996 (1997) https://doi.org/10.1063/1.120241
  8. C. I. Harris and A. O. Konstantinov, Physica Scripta T79 27 (1999) https://doi.org/10.1238/Physica.Topical.079a00027
  9. V. Khemka, R. Patel, T.P. Chow and R.J. Gutmann, Solid-State Electron. 43, 1945 (1999) https://doi.org/10.1016/S0038-1101(99)00155-0
  10. B.J. Baliga, IEEE Electron Dev. Lett. 5, 194 (1984) https://doi.org/10.1109/EDL.1984.25884
  11. K.J. Schoen, J.M. Woodall, J.A. Cooper, Jr. and M.R. Melloch, IEEE Trans. Electron. Dev. 45, 1595 (1998) https://doi.org/10.1109/16.701494
  12. M. Mehrotra and B.J. Baliga, Solid State Electron. 38, 703 (1995) https://doi.org/10.1016/0038-1101(94)00145-6
  13. B.J. Baliga and H.R. Chang, IEEE IEDM Tech. Dig. 658-661 (1987)
  14. A. O. Konstantinov, N. Nordell, Q. Wahab, and U. Lindefelt, Appl. Phys. Lett. 73, 1850 (1998) https://doi.org/10.1063/1.122303
  15. R. Singh, J.A. Cooper, Jr., M.R. Melloch, T.P. Chow and J.W. Palmour, IEEE Trans. Electron Dev. 49, 665 (2002) https://doi.org/10.1109/16.992877
  16. M.C. Tarplee, V.P. Madangarli, Q. Zhang and T.S. Sudarshan, IEEE Trans. Electron Dev. 48, 2659 (2001) https://doi.org/10.1109/16.974686
  17. P. Alexandrov, J.H. Zhao, W. Wright, M. Pan and M. Weiver, Electron. lett. 37, 1261 (2001) https://doi.org/10.1049/el:20010850AdditionalInformation
  18. P.G. Neudeck and C. Fazi, IEEE Electron Dev. Lett. 18, 96 (1997) https://doi.org/10.1109/55.556092
  19. J.B. Casady, in Processing of Wide Bandgap Semiconductors (William Andrew, Norwich, NY, 2000)
  20. C. I. Harris and A. O. Konstantinov, Physica Scripta T79 27 (1999) https://doi.org/10.1238/Physica.Topical.079a00027
  21. K.V. Vassilevski, A.B. Horsfall, C.M. Johnson, N.G. Wright and A.G. O'Neill, IEEE Trans. Electron. Dev. 49, 947 (2002) https://doi.org/10.1109/16.998610
  22. D.T. Morisette, J.A. Cooper, Jr., M.R. Melloch, G.A. Dolny, P.M. Shenoy, M. Zafrani and J. Gladish, IEEE Trans. Electron Dev. 48, 349 (2001) https://doi.org/10.1109/16.902738
  23. Q. Zhang and T.S. Sudarshan, Solid-State Electron. 45, 1847 (2001) https://doi.org/10.1016/S0038-1101(01)00191-5
  24. D.C. Sheridan, G. Niu, J.N. Merrett, J.D. Cressler, C. Ellis and C.C. Tin, Solid-State Electron. 44, 1367 (2000) https://doi.org/10.1016/S0038-1101(00)00081-2
  25. V. Saxena, J.N. Su and A.J. Steckl, IEEE Trans. Electron Dev. 46, 456 (1999) https://doi.org/10.1109/16.748862
  26. B.J. Baliga, Power Semiconductor Devices (PWS, Boston 1996)