Analysis of Electrical Properties of Ti/Pt/Au Schottky Contacts on (n)GaAs Formed by Electron Beam Deposition and RF Sputtering

  • Published : 2003.03.01

Abstract

This paper describes a study on the abnormal behavior of the electrical characteristics of the (n)GaAs/Ti/Pt/Au Schottky contacts prepared by the two techniques of electron beam deposition and rf sputtering and after an annealing treatment. The samples were characterized by I-V and C-V measurements carried out over the temperature range of 150 - 350 K both in the as prepared state and after a 300 C, 30 min. anneal step. The variation of ideality factor with forward bias, the variation of ideality factor and barrier height with temperature and the difference between the capacitance barrier and current barrier show the presence of a thin interfacial oxide layer along with barrier height inhomogenieties at the metal/semiconductor interface. This barrier height inhomogeneity model also explains the lower barrier height for the sputtered samples to be due to the presence of low barrier height patches produced because of high plasma energy. After the annealing step the contacts prepared by electron beam have the highest typical current barrier height of 0.85 eV and capacitance barrier height of 0.86 eV whereas those prepared by sputtering (at the highest power studied) have the lowest typical current barrier height of 0.67 eV and capacitance barrier height of 0.78 eV.

Keywords

References

  1. Y.T.Kim, C.W.Lee, and D.J.Kim, Appl. Phys. Lett., 72, 1507 (1998) https://doi.org/10.1063/1.121041
  2. B.K.Sehgal, R.Gulati, A.A.Naik, S.Vinayak, D.S.Rawal, H.S.Sharma, Materials Science and Engineering B48, 229 (1997) https://doi.org/10.1016/S0921-5107(97)00042-1
  3. S.P.Kwok, J. Vac. Sci. Technol., B4, 1383 (1986) https://doi.org/10.1116/1.583462
  4. A.Cola, M.G.Lupo, L.Vasanelli and A.Valentini, J. Appl. Phys., 71, 4966 (1992) https://doi.org/10.1063/1.350594
  5. A.Zussman, J. Appl. Phys., 59, 3894 (1986) https://doi.org/10.1063/1.336732
  6. M.D.Dio, A.Cola, M.G.Lupo and L.Vasanelli, Solid State Electron., 38, 1923 (1995) https://doi.org/10.1016/0038-1101(95)00020-T
  7. F.D.Auret, S.A.Goodman, Y.Leclerc, G.Myburg and C.Schutte, Materials Science and Technology, 13, 945 (1997) https://doi.org/10.1179/026708397790285340
  8. W.J.Devlin, Electronics lett., 16, 92 (1980) https://doi.org/10.1049/el:19800070AdditionalInformation
  9. E.H.Rhoderick, R.H.Williams, Metal-Semiconductor Contacts, Oxford, Clarendon Press (1988)
  10. B.L.Sharma, Metal-Semiconductor Schottky Barrier Junctions and their applications (ed. B.L.Sharma), New York, Plenum (1984)
  11. S.M.Sze, Physics of Semiconductor Devices 2nd ed., New York, Wiley (1981)
  12. H.W.Hubers and H.P.Roser, J. Appl. Phys., 84, 5826 (1998) https://doi.org/10.1063/1.368852
  13. V.W.L.Chin, M.A.Green and J.W.V.Storey, J. Appl. Phys., 68, 3470 (1990) https://doi.org/10.1063/1.347169
  14. E.Grussel, S.Berg and L.P.Andersson, J. Electrochem. Soc., 127, 1571 (1980) https://doi.org/10.1149/1.2129953AdditionalInformation
  15. S.J.Fonash, S.Ashok and S.Singh, Appl. Phys. Lett., 39, 423 (1981) https://doi.org/10.1063/1.92738
  16. K.Maeda, H.Ikoma, K.Sato and T.Ishida, Appl. Phys. Lett., 62, 2560 (1993) https://doi.org/10.1063/1.109296
  17. H.Ikoma, T.Ishida, K.Sato, T.Ishikawa and K.Maeda, J. Appl. Phys., 73, 1272 (1993) https://doi.org/10.1063/1.353269
  18. R.T.Tung, Phys. Rev., B45, 13509 (1992) https://doi.org/10.1103/PhysRevB.45.13509
  19. R.T.Tung, Appl. Phys. Lett., 58, 2821 (1991) https://doi.org/10.1063/1.104747
  20. J.H.Werner and H.H.Guttler, J. Appl. Phys., 69, 1522 (1991) https://doi.org/10.1063/1.347243
  21. J.H.Werner and H.H.Guttler, J. Appl. Phys., 73 1315 (1993) https://doi.org/10.1063/1.353249
  22. Y.P.Song, R.L.V.Meirhaeghe, W.T.Laflere and F.Cardon, Solid State Electron., 29, 633 (1986) https://doi.org/10.1016/0038-1101(86)90145-0
  23. A.Gumus, A.Turut and N.Yalcin, J. Appl. Phys., 91, 245 (2002) https://doi.org/10.1063/1.1424054
  24. J.R.Waldrop, Appl. Phys. Lett., 44, 1002 (1984) https://doi.org/10.1063/1.94599
  25. A.Olbrich, J.Vancea, F.Kreupl and H.Hoffman, J. Appl. Phys., 83, 358 (1998) https://doi.org/10.1063/1.366691
  26. G.M.Vanalme, L.Goubert, R.L.V.Meirhaeghe, F.Cardon and P.V.Daele, Semicond. Sci. Technol., 14, 871 (1999) https://doi.org/10.1088/0268-1242/14/9/321
  27. H.Palm, M.Arbes and M.Schulz, Phys. Rev. Lett., 71, 2224 (1993) https://doi.org/10.1103/PhysRevLett.71.2224
  28. S.Chand and J.Kumar, Semicond. Sci. Technol., 12, 899 (1997) https://doi.org/10.1088/0268-1242/12/7/022
  29. P.Revva, J.M.Langer, M.Missous and A.R.Peaker, J.Appl. Phys., 74, 416 (1993) https://doi.org/10.1063/1.354126
  30. I.Ohdomari and K.N.Tu, J. Appl. Phys., 51, 3735 (1980) https://doi.org/10.1063/1.328160
  31. S.Zhu, R.L.V.Meirhaeghe, C.Detavernier, F.Cardon, G.Ru and B.Z.Li, Solid State Electron., 44, 663 (2000) https://doi.org/10.1016/S0038-1101(99)00268-3
  32. Zs.Horwvath, Mater. Res. Soc. Symp. Proc, 260, 359 (1992)
  33. R.F.Schmitsdroff, T.U.Kampen and W.Monch, J. Vac. Sci. Technol., B15, 1221 (1997) https://doi.org/10.1116/1.589442
  34. M.K.Hudait, P.Venkateswarlu and S.B.Krupanidhi, Solid State Electron., 45, 133 (2001) https://doi.org/10.1016/S0038-1101(00)00230-6
  35. S.Ashok, J.M.Borego and R.J.Gutman, Solid State Electron., 22, 621 (1979) https://doi.org/10.1016/0038-1101(79)90135-7
  36. F.A.Padovani, Semiconductors and semi-metals (ed. Wilardson RK, Beer AC ) NY, Academic Press (1971)
  37. J.Tersoff, Phys. Rev., B35, 6182 (1987) https://doi.org/10.1103/PhysRevB.35.6182
  38. M.Forment, R.L.V.Meirhaeghe, A.D.Vrieze, K.Strubbe and W.P.Gomes, Semicond. Sci. Technol., 16, 975 (2001) https://doi.org/10.1088/0268-1242/16/12/305
  39. S.Dhar, V.R.Balakrishnan, V.Kumar and S.Ghosh, IEEE Trans. Electron Dev., 47, 282 (2000) https://doi.org/10.1109/16.822268
  40. B.K.Sehgal, B.Bhattacharya, S.Vinayak and R.Gulati, Thin Solid Films, 330, 146 (1998) https://doi.org/10.1016/S0040-6090(98)00756-1
  41. H.K.Henisch, Semiconductor contacts, Oxford Univ. Press. (1984)