Abstract
In this paper, we suggest a method of robust watermarking for protection of multimedia data using the wavelet transform and artificial neural network. for the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except fur the lowest subband LL$_3$, we apply a calculated threshold about chosen cluster as the biggest. We used binary logo watermarks to make sure that it is true or not on behalf of the Gaussian Random Vector. Besides, we tested a method of dual watermark insertion and extraction. For the purpose of implementation, we decompose a original image using wavelet transform at level 3. After we classify transformed coefficients of other subbands using neural network except for the lowest subband LL$_3$, we apply a above mentioned watermark insert method. In the experimental results, we found that it has a good quality and robust about many attacks.
본 논문에서는 인간시각시스템의 특성에 기반하여 웨이블릿 변환을 적용하여 멀티미디어 데이터의 소유권 보호를 위하여 시각적으로 눈에 띄지 않는 강인한 워터마킹 기법을 제안하고 있다. 이를 위하여 우선 웨이블릿 변환을 사용하여 level 3에서 원 영상을 분해한 후, 최저파수 대역에 해당하는 LL$_3$대역을 제외한 모든 부 대역에 신경회로망을 사용하여 웨이블릿 분해 계수들을 분류한 다음, 최대값을 갖는 클러스터에 대해서 임계치를 적용한다. 그리고 사용된 워터마크는 워터마크의 시각적 확인을 위하여 가우시안 랜덤 벡터 대신에 이진 로고 형태의 워터마크를 사용하였다. 또한, 본 논문에서는 다중 워터마크의 삽입 및 검출을 테스트하였다. 이를 위하여, 웨이블릿 변환을 이용하여 level 3에서 원 영상을 분해한 후, 최 저주파수 대역에 해당하는 LL$_3$ 대역을 제외한 모든 부대역에 대하여 워터마크를 삽입하였다. 실험에서 우리는 여러 가지 공격에서도 삽입한 워터마크가 강인함을 알 수 있었다.