원유오염농도와 미생물 농도가 탄화수소의 생분해에 미치는 영향

Effects of Oil Contamination Levels and Microbial Size on Hydrocarbon Biodegradation.

  • 백경화 (한국생명공학연구원 환경생명공학연구실) ;
  • 김희식 (한국생명공학연구원 환경생명공학연구실) ;
  • 이인숙 (이화여자대학교 생명과학과) ;
  • 오희목 (한국생명공학연구원 환경생명공학연구실) ;
  • 윤병대 (한국생명공학연구원 환경생명공학연구실)
  • 발행 : 2003.12.01

초록

오염토양에 유류분해능을 가진 Nocardia sp. H17-1의 접종시 고려되어야 할 인자중 하나인 초기 오염농도에 의한 탄화수소분해능과 초기 접종농도에 의한 분해능 및 균주의 생육을 조사하였다. H17-1은 실험 50일 동안 초기 오염농도 10, 50, 100 g Arabian light oil/kg of soil에 대해 각각 78.5%, 94.3%, 53.2%의 탄화수소를 제거하였으며, 오염농도가 높을수록 분해속도 상수(k) 낮아졌다. $CO_2$의 생성량 또한 오염농도가 높을수록 증가하였으나, 100 g/kg-soil의 오염농도에서는 균의 생육이 저해를 받는 것으로 나타났다. H17-1의 초기 접종농도에 의한 영향은 균의 접종량에 따라 최종 남은 TPH의 양은 큰 차이를 나타내지 않았으나, 분해속도상수(k)는 균의 접종량이 늘어남에 따라 크게 증가되었으며, $CO_2$의 생성량 또한 균의 접종농도에 따라 증가하였다.

The purpose of this study was to evaluate the Influence of oil concentration and inoculum size on petroleum biodegradation in soil by Nocardia sp. H17-1, isolated from oil-contaminated soil. To investigate the effect of initial oil concentration on total petroleum hydrocarbon (TPH) degradation, the soil was artificially contaminated with 10, 50 or 100 g of Arabian light oil per kg of soil, respectively. After 50 days, Nocardia sp. H17-1 degraded 78,94 and 53% of the each initial TPH concentration, respectively. Also, it produced 1.35, 4.21, and 5.91 mmol of $CO_2$ per g of soil, respectively. The degradation rate constant (k) of TPH was decreased in proportion to the initial oil concentrations while $CO_2$ production was increased with the concentration. The growth of Nocardia sp. H17-1 was remarkably inhibited when it was inoculated into soil containing 100 g of oil per kg of soil. To evaluate the effect of the inoculum size, the soil was artificially contaminated with 50 g of Arabian light oil per kg of soil, and inoculated with $3${\times}$10^{6}$ , $5${\times}$10^{7}$ , $2${\times}$10^{8}$ cells per g of soil, respectively. After 50 days, the degradation of TPH was remained with similar in all treatment but degradation rate constant (k) and evolved $CO_2$ was increased with increasing the inoculum size.

키워드

참고문헌

  1. Kor. J. Biotechnol. Bioeng. v.11 원유 분해균주 Nocardia sp. H17-1의 분리 및 특성 이창호;권기석;김희식;서현효;안극현;권태종;윤병대
  2. Biodegradation and bioremediation Kinetics Alexandr,M.;M.Alexander (2nd ed.)
  3. Microbiol . Rev. v.45 Microbial degradations of petroleum hydrocarbons:An environmental perspectives Atlas,R.M.
  4. Advances in Microbial Ecology v.12 Hydrocarbon biodegradation and oil spill bioremediation Atlas,R.M.;R.Bartha;K.Marshall(ed.) https://doi.org/10.1007/978-1-4684-7609-5_6
  5. Adv. Appl. Microbiol v.22 The microbiology of aquatic oil spill Bartha,R.;R.M.Atlas https://doi.org/10.1016/S0065-2164(08)70164-3
  6. Environ. Microbiol. v.2 Ecological study of bioaugementation failure Bouchez,T.;D.Patureau;P.Dabear;S.Juretschko;J.Dore;P.Delgenes;R.Moletta;M.Wagner https://doi.org/10.1046/j.1462-2920.2000.00091.x
  7. Environ. Pollu. v.110 Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment Del'Aroc,J.P.;F.P de Franca
  8. Appl. Environ. Microbiol v.37 Effect of environmental parameters on the biodegradation of oil sludge Dibble,J.T.;R.Bartha
  9. J. Chromato v.A809 Comparison of oil composition changes due to biodegradation and physical weathering in different oils Foght,K.S.;D.W.S.Westlake
  10. Bioaugmentation for site remediation Bioremediation: when is bioaugmentation needed? Forsyth,J.V.;T.M.Tsao;R.D.Bleam;R.E.Hinchee;J.fredrickson;B.C.Alleman(ed.)
  11. Appl. Environ. Microbiol v.50 Reasons for possible failure of inoculation to enhance biodegradation Goldstein,R.M.;L.M.Mallory;M.Alexander
  12. Appl. Environ. Microbiol. v.60 Effect of mineral and organic soil constituents on microbial mineralization of organic compounds in a natural soil Knaebel,D.B.;T.W.Federle;D.C.Mcaboy;J.R.Vestal
  13. Appl. Microbiol. Biotechnol. v.51 Bioavaliability of hydrocarbons during microbial remediation of a snady soil Loser,H.;H.Seidel;P.Hoffman;A.Zehndorf https://doi.org/10.1007/s002530051370
  14. Appl. Microbial Biotechnol v.35 Factors affecting the microbial degradation of phenanthrene in soil Manial,V.B.;M.Alexander
  15. Chemosphere v.40 Monitoring of bioremediation by soil biological activities Margesin,R.;A.Zimmerbauer;F.Schinner https://doi.org/10.1016/S0045-6535(99)00218-0
  16. Appl. Environ. Microbiol. v.67 Bioremediation(natural attenuation and biostimulation)of diesel-oil-contaminate soil in an Alpine Glacier skiing area Margensin,R.;F.Schinner https://doi.org/10.1128/AEM.67.7.3127-3133.2001
  17. Microbiol. Ecol. v.20 Biodegradation of pentachlorphenol in natural soil by inoculated Rhodococcus chlorophenolicus Middeldrop,P.J.M.;M.Briglia;M.S.Salkinoja-Salonen https://doi.org/10.1007/BF02543872
  18. Appl. Environ. Microbiol. v.67 Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil Mishra,S.;J.Jyot;R.C.Kuhad;B.Lal https://doi.org/10.1128/AEM.67.4.1675-1681.2001
  19. Bull. Environ. Contam. Toxicol. v.54 Inhibitory effects on degradation of diesel oil in soil microcosm by commercial bioaugementation product Moller,J.;H.Gaarn;T.Steckel;E.B.Wedebye;D.Westermann
  20. Appl. Environ. Microbiol v.31 Microbial degradation of oil spills enhanced by a slow-release fertilizer Olivieri,R.P.;A.Bacchin;N.Robertiello;L.O.Degen;A.Tonolo
  21. Appl. Environ. Microbiol v.56 Inoculum size as a factor limiting success of inoculation for bioremediation Ramadan,M.A.;O.M.El-Tayber;M.Alexander
  22. Chemosphere v.51 Inoculation of an atrazinedegrading strain. Chelatobacter heintzii Cit1, in four different soils: effect of different inoculation densities Rousseaux,S.;A.Hartmann;B.Lagacherie;S.Piutti;F.Andreux;G.Soulas
  23. Environ. Sci. Technol v.31 Physiolocigal properties and biodegradation of crude oil Sugiura,K.;M.Ishihara;T.Shimaichi;S.Harayama https://doi.org/10.1021/es950961r
  24. Curr. Opin. Biotechnol. v.7 Bioaugemention as a soil bioremediation approach Vogel,T.M. https://doi.org/10.1016/S0958-1669(96)80036-X