초록
반복 학습 제어에서 수렴 조건은 수렴 속도와 잔존 오차와 같은 성능을 결정한다. 따라서, 덜 신중한 수렴 조건을 구할 수 있다면, 그 성능은 향상될 것이고 사용 적합한 학습 제어기의 수는 증가된다. 주파수 영역에서, 연속적인 오차들간의 전달 함수의 $H_{\infty}$ 놈(norm)을 학습 시스템의 수렴성을 조사하기 위해 사용해왔다. 그러나, $H_{\infty}$ 놈을 바탕으로 한 수렴 조건이 단조 수렴성에 대하여 명확한 특성을 가진다하더라도, 특히, 다중 입출력 시스템에서 몇 가지 단점을 가진다. 본 논문에서 는 수렴 조건과 수렴의 단조성간의 관계를 밝힌다. 또한 주파수 영역에서 기존의 수렴 조건을 대신할 수 있는 수정된 수렴 조건을 주파수 영역 리아프노프(Lyapunov) 방정식을 이용하여 구한다.
Convergence condition determines performance of iterative learning control (ILC), for example, convergence speed, remaining error, etc. Hence, the performance can be elevated and a feasible set of learning controllers grows if a less conservative condition is obtained. In the frequency domain, the $H_{\infty}$ norm of the transfer function between consecutive errors has been currently used to test convergence of a learning system. However, even if the convergence condition based on the $H_{\infty}$ norm has a clear property about monotonic convergence, it has a few drawbacks, especially in MIMO plants. In this paper, the relation between the condition and the monotonicity of convergence is clarified and a modified convergence condition is found out using a frequency domain Lyapunov equation, which supersedes the conventional one in the frequency domain.