DOI QR코드

DOI QR Code

Fe-XAl-0.1Y(X =5, 10, 14 wt.%) 합금의 고온 산화거동

High Temperature Oxidation Behaviour of Fe-XAl-0.1Y(X = 5, 10, 14 wt.%) Alloys

  • 이병우 (부경대학교 신소재공학부) ;
  • 서원찬 (부경대학교 신소재공학부) ;
  • 박찬 (부경대학교 신소재공학부)
  • Lee, Byung-Woo (Division of Materials Science and Engineering, Pukyong National Univ.) ;
  • Seo, Won-Chan (Division of Materials Science and Engineering, Pukyong National Univ.) ;
  • Park, Chan (Division of Materials Science and Engineering, Pukyong National Univ.)
  • 발행 : 2003.12.01

초록

The oxidation behaviour of Fe-XAl-0.1Y(X= 5, 10, 14 wt.%) alloys were investigated at 1073, 1173 and 1273 K in oxygen/ nitrogen gas atmosphere for 1∼24 hrs using SEM/EDX, XRD and EPMA. The weight changes of Fe-XAl-0.1Y alloys followed the parabolic rate law. Oxidation rates of 10Al and 14Al alloys were ten times lower than that of 5Al alloys. This is attributed to the formations of protective $A1_2$$O_3$oxides on the surface of 10Al and 14Al alloys. The oxidation product scales of the 5Al alloy showed that thick iron oxide scales($Fe_2$$O_3$, $Fe_3$$O_4$) containing porosities formed during early stages of oxidation. With continued oxidation, aluminum oxide was formed at the alloy/scale interface.

키워드

참고문헌

  1. N. Srinivas, and V.K. Sikka, Processing, properties and applications of iron aluminides, p.69, ed., J.H. Schneibel, M.A. Crimp, TMS, PA (1994)
  2. O. Pocci, O. Tassa, and C. Testani, Processing, properties and applications of iron aluminides, p.19 ed, J.H. Schneibel, M.A. Crimp, TMS, PA (1994)
  3. M.R. Hajalijol, S.C. Deevi, V.K. Sikka, and C.R. Scorey, Mater. Sci. Eng., A258, 249 (1998) https://doi.org/10.1016/S0921-5093(98)00941-1
  4. W.E. Boggs, J. Electrochem. Soc., 118, 906 (1971) https://doi.org/10.1149/1.2408222
  5. R.G. Miner and V. Nagarajan, Oxid. of Met., 16(3/4) 313 (1981) https://doi.org/10.1007/BF00603839
  6. I. Rommerskirchen, B. Eltester, and H.J. Grabke, Mat. and Corr., 47, 646 (1996) https://doi.org/10.1002/maco.19960471109
  7. B.W. Lee, H.I. Park, J.S. Kim, K.H. Lee, and H.S. Kim, Kor. J. Mat. Res., 7(10), 898 (1997)
  8. C.H. Kao and C.M. Wan, J. Mat. Sci., 23, 1943 (1988) https://doi.org/10.1007/BF01115754
  9. F. Saegusa and L. Lee, Corrosion, 22, 168 (1966) https://doi.org/10.5006/0010-9312-22.6.168
  10. P. Tomaszewicz, and G.R. Wallwork, Oxid. of Met., 19(5/6), 165 (1983) https://doi.org/10.1007/BF00666643
  11. A.G. Evans, and R.M. Cannon, Mater. Sci. Forum, 43, 243 (1989) https://doi.org/10.4028/www.scientific.net/MSF.43.243
  12. F.H. Stott, G.C. Wood, and J.Stringer, Oxid. Met., 44, 113 (1995) https://doi.org/10.1007/BF01046725
  13. B.A. Pint, J.R. Martin, and L.W. Hobbs, Oxid. Met., 39, 167 (1993) https://doi.org/10.1007/BF00665610
  14. V. Shankar Rao, R.G. Baligidad, and V.S. Raja, Intermetallics, 10, 73 (2002) https://doi.org/10.1016/S0966-9795(01)00106-6