m-분포 나카가미 페이딩 채널에서 정방형 M-QAM의 MRC 다이버시티 성능분석

MRC Diversity Analysis for Square M-QAM in Nakagkmi-m Fading Channels

  • 이영환 (한국전자통신연구원 표준연구센터) ;
  • 이재윤 (대전대학교 정보통신공학과) ;
  • 윤동원 (대전대학교 정보통신공학과) ;
  • 조평동 (한국전자통신연구원 표준연구센터)
  • 발행 : 2003.11.01

초록

이 논문에서는 주파수 비 선택적 m분포 나카가미 페이딩 채널에서 정방형 M-QAM 신호에 대하여 MRC 다이버시티 적용시 정확하고 일반화된 평균 비트 에러 확률식을 closed-form으로 유도하고 성능을 분석한다. 독립된 페이딩 환경과 상관된 페이딩 환경에 대하여 각각 L개의 브랜치를 가지는 MRC 다이버시티를 고려하며. 성능 분석을 통하여 에러 성능이 향상됨을 보인다. 이 논문에서 제시되는 새로운 비트 에러 확률 식들은 이동 통신의 페이딩 채널에서 MRC 다이버시티가 적용된 임의의 정방형 M-QAM 신호에 대한 성능을 계산하고 분석하는데 유용한 방법을 제공한다.

This paper presents and analyses the exact and general closed-form expression for the average bit error probability of M-ary square quadrature amplitude modulation (QAM) for maximal ratio combining (MRC) diversity reception in frequency-nonselective Nakagami-m fading. An L-branch Maximal ratio combining diversity technique with independent or correlated fading cases is considered. Numerical results demonstrate the error performance improvement by employing with the use of MRC diversity reception. The new expressions presented here can offer a convenient way to evaluate the performance of an arbitrary square M-W square QAM with an MRC diversity combiner for various cases of practical interest.

키워드

참고문헌

  1. Lee, Adaptive Wiretess Transceiver- Turbo-Coded, Turbo-Equatized and Space-Tme Coded, TDMA, CDMA and OFDM Systems, JohnWiley & Sons, 2002
  2. J. Lu, K. B. Letaief, J. C-I Chuang, and M. L.Liou, 'M-PSK and M-QAM BER ComputationUsing Signal-Space Concepts,' IEEE Trans.Commun., vol. 47, pp.181-184, Feb
  3. L. Yang and L. Hanzo, 'A RecursiveAlgorithm for the Error Probability Evaluationof M-QAM,' IEEE Comm. Letters, vol. 4, No.10, PP.304-306, Oct. 2000 https://doi.org/10.1109/4234.880816
  4. M. P. Fitz and J. P. Seymour, 'On the BitError Probability of QAM odulation, 'Internationat Journat of Wiretess Information etworks, vol. 1, no. 2, PP. 131-139, 1994
  5. K. Cho and D. Yoon, 'On the General BER Expression of One and Two Dimensional Amplitude Moduladons,' IEEE Transactions on Communications, vol. 50, pp. 1074-1080, July 2002 https://doi.org/10.1109/TCOMM.2002.800818
  6. M. Nakagami, 'The m-distribution - A general formula of intensity distribution of rapidfading,' in Statistical methods in radio wave propagation, W. G. Hoffman, Ed., Oxford,England: Pergamon Press, pp. 3-36, 1960
  7. I. S. Gradshteyn, and I. M. Ryzhik, Tabtesof integral, series and product, New York Academic Press, 1980
  8. W. C. Jakes, Mobile CommunicationEngineering, New York: Wiley, 1974
  9. V. Aalo and S. Pattaramalai, 'Average errorrate for coherent MPSK signals in Nakagamifading channels,' EIectron. Lett., vol. 32,(17), pp. 1538-1539, 1996 https://doi.org/10.1049/el:19961032
  10. A. Ainnamalai, 'Error Rates for Nakagami-mFading Multichannel Reception of Binary and M-ary signals,' IEEE Trans. Commun., vol.49, pp. 58-68, Jan. 2001 https://doi.org/10.1109/26.898251
  11. V. Aalo, 'Performance ofMaximal- Ratio Diversity Systems in a Correlated Nakagami-Fading Environment,' IEEE Trans.Commun., vol. 43, pp. 2360-2369, Aug. 1995 https://doi.org/10.1109/26.403769
  12. E. K. Al-Hussaini and A. A. M. Al-Bassiouni,'Performance of MRC Diversity Systems forthe Detection of Signals with NakagamiFading,' IEEE Trans. Commun., vol. 33pp.1315- 1319, Dec. 1985 https://doi.org/10.1109/TCOM.1985.1096243
  13. T. Eng and B. Milstein, 'Coherent DS-CDMAPerformance in Nakagami Multipath Fading,'IEEE Trans. Commun., vol. 43, pp. 1134-1143, March 1995 https://doi.org/10.1109/26.380145
  14. H. Exton, Multipte Hyperseometric Functionsand AppIications, New York: Wiley, 1976
  15. W.C. Lee, Mobile Communication DesignFundamentals. New York: John, Wiley &Sons, 2nd ed., 1993
  16. L.J. Slater, Confluent Hypergeometric Function,. Cambridge,U.K.: Cambridge University Press, 1960