DOI QR코드

DOI QR Code

옥수수 유식물 신초에서 Brassinosteroid류의 동정 및 생합성 경로 추정

Identification and Biosynthetic Pathway of Brassinosteroids in Seedling Shoots of Zea mays L.

  • 발행 : 2003.12.01

초록

GC-MS/SIM를 통하여 옥수수 유식물 신초로부터 해 castasterone (CS)과 6-deoxocastasterone (6-deoxoCS)을 동정하였다. 또한 BRs의 생합성 전구물질인 24$\alpha$-methylcholesterol과 24$\alpha$-methylcholestanol이 동정하였다. 이들 BRs와 생합성 전구물질은 BRs의 생합성과정 중 후기 C6산화과정에 속하는 화합물로서, 옥수수 유식물 줄기에서는 BRs의 생합성 과정으로 후기 C6산화과정이 주된 생합성 과정임을 알 수 있었다. 다음으로 옥수수 유식물 줄기내의 BRs가 발아와 더불어 종자에서부터 이동해 온 것인지, 아니면 줄기 생장 시 줄기 자체가 생합성된 것인지를 조사하기 위하여 몇몇 중요한 후기 C6산화과정의 반응을 촉매하는 효소의 활성이 유식물 줄기에 존재하는지를 조사하였다. 그 결과 후기 C6산화과정에 포함되는 24$\alpha$-methylcholestanol에 서 6-deoxocathasterone (6-deoxoCT), 6-deoxoteasterone (6-deoxoTE) 에서 6-deoxo-3-dehydroteasterone (6-deoxo-3-DHT)을 거쳐 6-deoxotyphasterol (6-deoxoTY),그리고 6-deoxoCS에서 CS로의 과정을 촉매하는 24$\alpha$-methylcholestanol 22(R)-hydroxlyase, 6-deoxoTE dehydrogenase/6-deoxo-3-DHT reductase, 6-deoxoCS oxidase의 활성이 옥수수 유식물 줄기에 존재하고 있음이 확인되었다. 이는 유식물 줄기 생장 시 필요한 BRs가 발아종자로부터 이동되는 것이 아니라, 유식물 줄기 자체에서 생합성 될 가능성이 높음을 나타내는 결과라 할 수 있다. 또한 옥수수 유식물 줄기에서 CS를 brassinolide(BL)로 전환하는 BL synthase의 활성이 검출되지 않아, 옥수수 유식물 줄기에서의 활성형 BR은 BL이 아닌 CS임을 밝혔다.

The potent biosynthetic precursors, 24$\alpha$-methylcholesterol and 24$\alpha$-methylcholestanol, and the endogenous brassinosteroids (BRs), castasterone (CS) and 6-deoxocastasterone (6-deoxoCS), were identified from shoots of maize seedlings. In addition, the presence for activities of several enzymes involved in the late C6-oxida-lion pathway from 24$\alpha$-methylcholestanol to CS was demonstrated in the plants. However, activity for brassinolide (BL) synthase which catalyze the conversion of CS to BL, the last step of the late C6-oxidation pathway, was not detected in the enzyme solution obtained from the maize shoots. Together with the fact that BL was not identified from the maize shoots, these results strongly suggested that BRs in the maize shoots are biosynthesized during seedling growth and the active BR in the shoots is not BL but CS.

키워드

참고문헌

  1. Abe H, Takatsuto S, Nakayama M, Yokota T (1995) 28-homoty-phasterol, a new natural brassinosteroid from rice (Oryza sativa) bran. Biosci Biotech Biochem 59: 176-178 https://doi.org/10.1271/bbb.59.176
  2. Adam G, Petzold U (1994) Brassinosteroids: a new phytohormone group. Naturwissenchaften 81: 210-217
  3. Arima M, Yokota T, Takahashi N (1984) Identification and quantification of brassinolide-related steroids in the insect gall and healthy tissue of the chesnut plant. Phytochemistry 23: 1587-1592 https://doi.org/10.1016/S0031-9422(00)83445-7
  4. Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230 https://doi.org/10.1105/tpc.10.2.219
  5. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1776 https://doi.org/10.1073/pnas.96.4.1761
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of utilizing the principle of proteindye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. ChoeS, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22$\alpha$-hydroxylation steps in brassi-nosteroid biosynthesis. Plant Cell 10:231-243 https://doi.org/10.1105/tpc.10.2.231
  8. Choi YH, Fujioka S, Nomura T, Harada A, Yokota T, Takatsuto S, Sakurai A (1997) An alternative brassinolide biosynthetic path-wayvialate C-6 oxidation. Phytochemistry 44: 609-613 https://doi.org/10.1016/S0031-9422(96)00572-9
  9. Chory J, Catterjee M, Cook R(1996) From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acsd Sci USA 93: 12066-12071 https://doi.org/10.1073/pnas.93.22.12066
  10. Clouse SD, Feldmann KA (1999) Molecular genetics of brassinos-teroids action. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids. Springer-Verlag, Tokyo, pp 163-190
  11. Donoghue NA, Norris DB, Trudgill PW (1976) The purification and properties of cyclohexanone oxygenase from Norcardia globerula CL1 and Acinetobacter. NCIB 9871. Eur J Biochem 63: 175-192 https://doi.org/10.1111/j.1432-1033.1976.tb10220.x
  12. Fraaije MW, Kamerbeek NM, van Berkel WJH and Janssen DB (2002) Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Lett 518: 43-47 https://doi.org/10.1016/S0014-5793(02)02623-6
  13. Fujioka S (1999) Natural occurrenceof brassinosteroids in the plant kingdom. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids. Springer-Verlag, Tokyo, pp 21-45
  14. Fujioka S, Inoue T, Takatsuto S, Yanagisawa T, Yokota T, Sakurai A (1995) Identification of a new brassinosteroid, cathasterone, in cultured cells of Cathamatus roseus as a biosynthetic precursor of teasterone. Biosci Biotech Biochem 59: 1543-1547 https://doi.org/10.1271/bbb.59.1543
  15. Fujioka S, Li J, Choi YH, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J, Sakurai A (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassino-steroid biosynthesis. Plant Cell 9: 1951-1962 https://doi.org/10.1105/tpc.9.11.1951
  16. Fujioka S, Sakurai, A (1997) Biosynthesis and metabolism of brassi-nosteroids. Physiol Plant 100: 710-715 https://doi.org/10.1111/j.1399-3054.1997.tb03078.x
  17. Gamoh K, Okamoto N, Takasuto S, Tejima I (1990) Determination of traces of natural brassinosteroids as dansylaminophenyl-boronates by liquid chromatography with fluorimetric detection. Anal Chim Acta 228: 101-105 https://doi.org/10.1016/S0003-2670(00)80484-5
  18. Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD Jr, Steffen GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napuspollen. Nature 281: 216-217 https://doi.org/10.1038/281216a0
  19. Kim SH, Chang SC, Lee EJ, Chung WS, Kim YS, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic responseof primary root o fmaize. Plant Physiol 123: 997-1004 https://doi.org/10.1104/pp.123.3.997
  20. Kim SK (1991) Natural occurrences of brassinosteroids. In: Cutler HG, Yokota T, Adam G, eds, Brassinosteroids: Chemistry, Bioactivity, and Application, ACS Symposium Series 474. Amer ChemSoc, Washington DC, pp 26-35
  21. Kim YS, Kim TW, Kim SK (2003) Conversion of 6-deoxocastas-terone to brassinolide in a liverwort, Marchantia polymorpha. Bull Korean ChernSoc 24: 1385-1388 https://doi.org/10.5012/bkcs.2003.24.9.1385
  22. Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabdopsis. Science 272: 398-401 https://doi.org/10.1126/science.272.5260.398
  23. Marquardt V, Adam G (1991) Recent advances in brassinosteroid research. In: Boemer H, Martin D, Sjut V, eds, chemistry of Plant Protection, Vol 7: Herbicide Resistance-Brassinosteroids, Gibberellins, Plant Growth Regulators. Springer-Verlag, Berlin, pp 103-139
  24. Meudt WJ (1987) Chemical and biological aspects of brassinolide. In: Fuller G, Nes WD, eds, Ecology and Metabolism of Plant Lipids. ACS Symp Ser 325, Amer Chem Soc, Washington DC, pp 53-75 https://doi.org/10.1021/bk-1987-0325.ch005
  25. Noguchi T, FUjioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124: 201-209 https://doi.org/10.1104/pp.124.1.201
  26. Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in gardenpea. Plant Physiol 113: 31-37 https://doi.org/10.1104/pp.113.1.31
  27. Park SH, Han KS, Kim TW, Shim JK, Takatsuto S, Yokota T, Kim SK (1999) Invivo and in vitro conversion of teasterone to typhasterol in cultured cells of Marchantia polymorpha. Plant Cell Physiol 40: 955-960 https://doi.org/10.1093/oxfordjournals.pcp.a029628
  28. Richter K, KooIman J (1991) Antiecdysteroid effects of brassinos-teroids in insects. In: Culter HG, Yokota T, Adam G, eds, Brassinosteroids; Chemistry, Bioactivity and Application, ACS Symp Ser 474, Amer Chem Soc, Washington DC, pp 265-279 https://doi.org/10.1021/bk-1991-0474.ch023
  29. Sakurai A (1999) Biosynthesis. In: Sakurai A, Yokota T, Clouse SD, eds, Brassinosteroids; Steroidal Plant Hormones. Springer-Verlag, Tokyo, pp 137-161
  30. Sakurai A, Fujioka S (1993) The current status of physiology and biochemistry of brassinosteroids. Plant Growth Regul 13: 147-159 https://doi.org/10.1007/BF00024257
  31. Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinos-teroids. Biosci Biotec Biochem 61: 757-762 https://doi.org/10.1271/bbb.61.757
  32. Sasse JM (1991) Brassinosteroids-induced elongation. In: Culter HG, Yokota T, Adam G, eds, Brassinosteroids; Chemistry, Bioactivity and Application, ACS Symp Ser 474, Amer Chem Soc,Washington DC, pp 255-264 https://doi.org/10.1021/bk-1991-0474.ch022
  33. Sekimoto H, Hoshi M, Nomura T, Yokota T (1997) Zinc deficiency affects the levels of endogenous gibberellins in lea mays L. Plant Cell Physiol 38: 1087-1090 https://doi.org/10.1093/oxfordjournals.pcp.a029276
  34. Suzuki Y, Yamaguchi I, Takahashi N (1985) Identification of castas-terone and brassinolide from immature seeds of Pharbitis purpurea. Agri BioI Chem 49: 49-54 https://doi.org/10.1271/bbb1961.49.49
  35. Suzuki Y, Yamaguchi I, Yokota T, Takahashi N (1986) Identification of castasterone, typhasterol and teasterone from the pollen Zea mays. Agric Bioi Chem 50: 3133-3188 https://doi.org/10.1271/bbb1961.50.3133
  36. Suzuki H, Fujioka S, Takatsuto S, Yokota T, Murofushi N,Sakurai A (1993) Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus. Plant Growth Regul 12: 101-106 https://doi.org/10.1007/BF00193241
  37. Suzuki H, Inoue T, fujioka S, Saito T, Takatsuto S, Yokota T, Murofushi N, Yanagisawa T, Sakurai A (1995) Conversion of 24-methylcholesterol to 6-oxo-24-methylcholestanol, a putative intermediate of the biosynthesis of brassinosteroids, in cultured cells of Catharanthus roseus. Phytochemistry 40: 1391-1397 https://doi.org/10.1016/0031-9422(95)00579-V
  38. Szekeres M, Nemeth K, koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CVP 90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182 https://doi.org/10.1016/S0092-8674(00)81094-6
  39. Takahashi T, Gasch A, Nishizawa N, Chua NH (1995) The DIMIN-UTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 9: 97-107 https://doi.org/10.1101/gad.9.1.97
  40. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRl1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380-383 https://doi.org/10.1038/35066597
  41. Yamamoto R, Fujioka S, Demura T, TakatsutoS, Yoshida S, Fukada H (2001) Brassinosteroid levels increase drastically prior to mophogenesis of tracheary elements. Plant Physiol 125: 556-563 https://doi.org/10.1104/pp.125.2.556
  42. Yokota T (1997) The structure, biosynthesis and function of brassi-nosteroids. Elsevier Trends Jumals 2: 137-143
  43. Yokota T, Watanabe S, OginoY, Yamaguchi I, Takahashi N (1990) adioimmunoassay for brassinosteroids and its use for compara-tive analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. J Plant Growth Regul 9: 151-159 https://doi.org/10.1007/BF02041955

피인용 문헌

  1. Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. vol.66, pp.9, 2005, https://doi.org/10.1016/j.phytochem.2005.03.007