DOI QR코드

DOI QR Code

Transformation of Artemisia adamsii, Endemic to a Gobi Desert, with CLP, Dhn5 to Enhance Environmental Stress Tolerance

CLP, Dhn5 유전자의 도입에 의한 고비사막 자생식물 Artemisia adamsii의 내건성 및 내동성 증진

  • 한규현 (단국대학교 생명자원과학부) ;
  • 황철호 (단국대학교 생명자원과학부)
  • Published : 2003.12.01

Abstract

Freezing and drought tolerances in plants are very important for survival in the desert. In an effort to reduce desertifcation in Gobi, a molecular breeding of Artemisia adamsii using the CLP (chitinase like protein, antifreeze protein) and Dhn5 (dehydrin5) genes from barley is performed by introducing them into Artemisia adamsii via Agrobacteria. We had found an optimal combinatorial concentration of hormones at 0.05mg/L of NAA and 0.5mg/L of BA for growth of callus in Artemisia adamsii. In addition, the higher rate of callus induction using hypocotyl as explant was observed comparing to explants of stem and leaf. There were some variations in the level of the proteins expressed among the transgenic lines such that the lines of CLP(CS1-5, 1-7,4-4) and Dhn5(DS2-2, 2-3) lines produce the protein to higher levels. The transgenic lines showing a higher level of Dhn5 exhibited better growth than nontransgenic callus in presence of 10 and 20% PEG. In case of the CLP tansgenic lines, both CS1-5 and CS1-7 showed a higher level of freezing tolerance determined by ion leakage test.

고비사막 접경지역의 식물인 Artermisia adamsii의 내건성 및 내동성 증진을 위해 조직배양과 CLP및 Dhn5유전자의 형질전환을 수행하였다. 다양한 호르몬 농도 조건에서의 성장을 확인한 결과, 0.05mg/L의 NAA와 0.5mg/L의 BAP조건과 0.1mg/L의 NAA와 0.5mg/L의 BAP가 포함된 배지의 암조건 하에서 최적의 캘러스 생장을 확인하였으며 유전자 도입 및 유전자의 발현이 확인된 캘러스가 세포 수준에서도 내건성 및 내동성이 증진되었음을 확인하였다. 그러나 Atremisia속 다른 식물과 다르게 조직절편에서 직접 기관분화를 유도하거나 캘러스를 통한 식물체 재생에 어려움이 있어 식물체 수준에서 형질전환에 따른 환경스트레스 내성의 증진을 확인하지 못하고 있다. 앞으로 진행될 A. adamsii의 식물체 재생에 대한 연구를 통해 내동성 및 내건성이 증진된 식물체를 육성하여 고비사막 지역적응력을 조사할 예정이다.

Keywords

References

  1. Bohlmann F, Hartono L, Jakupovic J Huneck S (1985) Guaianolides relatedto arborescin from Artemisia adamsii. Phytochemistry 24: 1003-1007 https://doi.org/10.1016/S0031-9422(00)83171-4
  2. Chen DH, Ye HC, Li GF (2000) Expression of chimeric famesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155: 179-183 https://doi.org/10.1016/S0168-9452(00)00217-X
  3. Geng S, Ma M, Ye HC, Liu BY, Li GF, Chong K (2001) Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci 160:691-698 https://doi.org/10.1016/S0168-9452(00)00453-2
  4. Ghosh B, Mukherjee S, Jha S (1997) Genetic transformation of Artemisia annua by Agrobacterium tumefaciens and artemisinin synthesis in transformed cultures. Plant Sci 122: 193-199 https://doi.org/10.1016/S0168-9452(96)04558-X
  5. Griffith M, Yang DSC, Ala P, Hon WC, Moffat BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100: 593-596 https://doi.org/10.1104/pp.100.2.593
  6. Griffith M, Yu XM (1999) Antifreeze proteins in winter rye leaves from oligomeric complexes. Plant Physiol l19: 1361-1369
  7. Hwang, CH, Park, HW, Min, SR, Liu, JR (2000) Freeze tolerance enhanced by antifreeze protein in plant. Kor J Plant Tiss Cul 27: 339-343
  8. Li XR, MaFY, Xiao HL, WangXP, Kim KC (2003) Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China. J Arid Env (in press)
  9. Liu CZ, Murch SJ, EL-Demerdash M, Saxena PK (2003) Regeneration of the egyptian medicinal plant Artemisia judaica L. Plant Cell Rep 21: 525-530
  10. Nin S, Bennici A, Roselli G, Mariotti D, Schiff S, Magherini R (1997) Agrobacterium tumefadens-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Rep 16: 725-730 https://doi.org/10.1007/s002990050310
  11. Park HW (2000) Cloning of freezing tolerance related genes from barley (Hordeum vulgare L.) and Kentucky bluegrass (Poa pratensis L.) and their expression in transgenic tobacco (Nicotiana. tabacum L.).MS thesis, Dankook university, Cheonan, Korea
  12. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Bioi 5: 69-76 https://doi.org/10.1007/BF00020088
  13. Shin SH, Yang DC (2003) Optimum condition for mass culture of hairy roots from Artemisiasylvatica MAX. Koran J Plant Biotech 30: 65-71 https://doi.org/10.5010/JPB.2003.30.1.065
  14. Shinozaki K, Yamaguchi-Shinozaki K(2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Cur Opi in Plant Bioi 3: 217-223 https://doi.org/10.1016/S1369-5266(00)80068-0
  15. Subally D, Quezel P (2002) Glacial or interglacial: Artemisia, a plant indicator with dual responses. Rev Palaeobot Palynol 120: 123-130 https://doi.org/10.1016/S0034-6667(01)00143-9
  16. Sung HC (2001) Analysis of freezing tolerance using differential expression of freezing tolerance-related genes in barley (Hordeum vulgareL.).MS thesis, Dankook university, Cheon-an, Korea
  17. Vance V, Vaucheret H (2001) RNA silencing in plants defence and counterdefence. Science 292: 2277-2280 https://doi.org/10.1126/science.1061334
  18. Vergauwe A, Cammaert R, Vandenberghe D, Genetello C, Inze D, Montagu MV, Eeckhout EVD (1996a) Agrobacterium tumefa-dens-mediated transformation of Artemisia annua L. and regen-eration oftransgenic plants. Plant Cell Rep 15: 929-933 https://doi.org/10.1007/BF00231590
  19. Vergauwe A, Geldre EV, lnze D, Montagu MV, Eeckhout EVD (1996b) The use amoxicillin and ticarcillin in combination with a $\beta$-lactamase inhibitor as decontaminating agents in the Agrobacterium tumefadens-mediated transformation of Artemisia annuaL. J Biotech 52: 89-95 https://doi.org/10.1016/S0168-1656(96)01631-8
  20. Woo BM, Lee KJ, Jun KS, Kim KH, Choi HT, Lee SH, Kim SU, Lee SH (2000) Studies on the desertification combating and sand industry development (I). KorSoc Env Res Rev Tech 3: 45-76
  21. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell S: 165-183
  22. Zhang W, Skarpe C (1996) Small-scale vegetation dynamics in semi-arid steppe in inner Mongolia. J Arid Env 34: 421-439 https://doi.org/10.1006/jare.1996.0122
  23. Zhu B, Chio DW, Fenton R, Close TJ (2000) Expression of the dehydrin multigene family and the development of freezing tolerance. Mol GenGennet 264: 145-153 https://doi.org/10.1007/s004380000299

Cited by

  1. Enhanced drought tolerance by expression of hvDhn5 gene in poplar vol.38, pp.3, 2011, https://doi.org/10.5010/JPB.2011.38.3.203