강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification

  • 이승관 (경희대학교 컴퓨터공학과) ;
  • 정태충 (경희대학교 컴퓨터공학과)
  • 발행 : 2003.11.01

초록

휴리스틱 알고리즘 연구에 있어서 중요한 분야 중 하나가 강화(Intensification)와 다양화(Diversification)의 조화를 맞추는 문제이다. 개미 집단 최적화(Ant Colony Optimization, ACO)는 최근에 제안된 조합 최적화 문제를 해결하기 위한 메타휴리스틱 탐색 방법으로, 그리디 탐색(greedy search)뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제(Traveling Salesman Problem, TSP)를 풀기 위해 처음으로 제안되었다. 본 논문에서는 ACO접근법의 하나인 개미 집단 시스템(Ant Colony System ACS)에서 강화와 다양화의 조화를 통한 성능향상기법에 대해 알아본다. 먼저 에이전트들의 방문 횟수 적용을 통한 상태전이는 탐색 영역을 넓힘으로써 에이전트들이 더욱 다양하게 탐색하게 한다. 그리고, 전역 갱신 규칙에서 전역 최적 경로만 갱신하는 전통적인 ACS알고리즘에서 대하여, 경로 사이클을 구성한 후 각 경로에 대해 긍정적 강화를 받는 엘리트 경로를 구분하는 기준을 정하고, 그 기준에 의해 추가 강화하는 방법을 제안한다. 그리고 여러 조건 하에서 TSP문제를 풀어보고 그 성능에 대해 기존의 ACS 방법과 제안된 방법을 비교 평가해, 해의 질과 문제를 해결하는 속도가 우수하다는 것을 증명한다.

One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

키워드

참고문헌

  1. A. Colorni, M. Dorigo, and V. Maniezzo, 'An investigation of some properties of an ant algorithm,' Proceedings of the Parallel Parallel Problem Solving from Nature Conference(PPSn 92), 1992, R. Manner and B. Manderick (Eds.), Elsevier Publishing, pp. 509-520
  2. A.Colorni, M. Dorigo, and V. Maniezzo, 'Distributed optimization by ant colonies,' Proceedings of ECAL91 - European Conference of Artificial Life, Paris, France, 1991, F.Varela and P.Bourgine(Eds.), Elsevier Publishing, pp. 134-144
  3. B. Freisleben and P. Merz, 'Genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems,' Proceedings of IEEE International Conference of Evolutionary Computation, IEEE-EC 96, 1996, IEEE Press, pp. 616-621 https://doi.org/10.1109/ICEC.1996.542671
  4. L.M. Gambardella and M. Dorigo, 'Ant Colony System: A Cooperative Learning approach to the Traveling Salesman Problem' IEEE Transaction on Evolutionary Computation, vol. 1, no. 1, 1997 https://doi.org/10.1109/4235.585892
  5. L. M. Gambardella and M. Dorigo, Ant-Q: a reinforcement learning approach to the traveling salesman problem, Proceedings of ML-95, Twelfth International Conference on Machine Learning, A. Prieditis and S. Russell (Eds.), Morgan Kaufmann, 1995, pp. 252-260
  6. M. Drigo, V.Maniezzo, and A.Colorni, 'The ant systems: optimization by a colony of cooperation agents,' IEEE Transactions of Systems, Man, and Cybernetics-Part B, vol. 26, No. 2, pp. 29-41, 1996 https://doi.org/10.1109/3477.484436
  7. M. Dorigo and G. D. Caro, 'Ant Algorithms for Discrete Optimization' Artificial Life, vol5, no.3, pp. 137-172, 1999 https://doi.org/10.1162/106454699568728
  8. M. Dorigo & L.M. Gambardella (1997), 'Ant Colonies for the Traveling Salesman Problem', BioSystems, 43:73-81 https://doi.org/10.1016/S0303-2647(97)01708-5
  9. P-C. Kanellakis and C.H. Papadimitriou, 'Local search for the asymmetric travling salesman problem,' Operations Reserach, vol. 28, no. 5, pp. 1087-1099, 1980
  10. S. Lin and B.W. Kernighan, 'An Effective Heuristic algorithm for the traveling salesman problem,' Operations Research, vol.21, pp. 498-516 https://doi.org/10.1287/opre.21.2.498
  11. SeungGwan Lee, TaeUng Jung and TaeChoong Chung, 'Improved Ant Agents System by the Dynamic Parameter Decision,' Proceedings of IEEE International Conference on FUZZ-IEEE 2001, IEEE Press, pp. 666-669
  12. SeungGwan Lee and TaeChoong Chung, 'A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System,' The KIPS TRansactions : Part B, pp. 237-242, 2003. 06 https://doi.org/10.3745/KIPSTB.2003.10B.3.237
  13. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/