References
- Convergence of probability measures P.Billingsley
- Ann. Math. Statist. v.38 Association of random variables with applications J.Esary;F.Proschan;D.Walkup https://doi.org/10.1214/aoms/1177698701
- Statist. Probab. Lett. v.17 A central limit theorem with random indices for stationary linear processes I.Fakhre-Zakeri;J.Farshidi https://doi.org/10.1016/0167-7152(93)90002-Z
- Sequential Anal. v.11 Sequential estimation of the mean of a linear process I. Fakhre-Zakeri;S.Lee https://doi.org/10.1080/07474949208836252
- Statist. Probab. Lett. v.35 A random functional central limit theorem for stationary linear processes generated by matingales I.Fakhre-Zakeri;S.Lee https://doi.org/10.1016/S0167-7152(97)00040-0
- Multivariate time series E.J.Hannan
- Ann. Math. Statist. v.37 Some concepts of dependence E.L.Lehmann https://doi.org/10.1214/aoms/1177699260
- Comm. Math. Phys. v.74 Normal fluctuations and the FKG inequalities C.M.Newman https://doi.org/10.1007/BF01197754
- Inequalities in statistics and probability (IMS Lecture Notes-Monograph Series) v.5 Asymptotic independence and limit theorems for positively and negatively dependent random variables C.M.Newman;Y.L.Tong(ed.)
- Ann. Probab. v.9 An invariance principle for certain dependent sequences C.M.Newman;A.L.Wright https://doi.org/10.1214/aop/1176994374
Cited by
- A central limit theorem for the linear process generated by associated random variables in a Hilbert space vol.78, pp.14, 2008, https://doi.org/10.1016/j.spl.2008.01.079