Robust and Non-fragile $H^{i~}$ State Feedback Controller Design for Time Delay Systems

  • Cho, Sang-Hyun (Xonmedia) ;
  • Kim, Ki-Tae (School of Electronic and Electrical Engineering, Kyungpook National University) ;
  • Park, Hong-Bae (School of Electronic and Electrical Engineering, Kyungpook National University)
  • Published : 2003.12.01

Abstract

This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.

Keywords

References

  1. World Automation Congress in Anchorage, Alaska On the design of non-fragile compensators via symbolic quantifier elimination P. Dorato;C. T. Abdallah;D. Famularo
  2. Proc. American Control Conference in San Diego, California Static output feedback controllers for systems with parametric uncertainty and controller gain variation J. R. Corrado;W. M. Haddad
  3. Proc. American Control Conference in Philadelphia, Pennsylvania Non-fragile controller design: An overview P. Dorato
  4. Proc. American Control Conference in Philadelphia, Pennsylvania Robust non-fragile LQ controllers: The static state feedback case D. Famularo;C. T. Abdallah;A. Jadbabaie;P. Dorato;W. M. Haddad
  5. Proc. American Control Conference in Philadelphia, Pennsylvania Robust resilient dynamic controller for systems with parametric uncertainty and controller gain variations W. M. Haddad;J. R. Corrado
  6. Proc. American Control Conference in Philadelphia, Pennsylvania Robust, non-fragile and optimal controller via linear matrix inequalities A. Jadbabie;C. T. Abdallah;D. Famularo;P. Dorato
  7. Proc. American Control Conference in Philadelphia, Pennsylvania Digital implementation of fragile controllers L. H. Keel;S. P. Bhattacharyya
  8. IEEE Trans. Automatic Control v.42 no.8 Robust, fragile, or optimal L. H. Keel;S. P. Bhattacharyya https://doi.org/10.1109/9.618239
  9. SICE in Morioka Robust and non-fragile $H^{\ingty}$ control of parameter uncertain time-varying delay systems J. H. Kim;S. K. Lee;H. B. Park
  10. Proc. IEEE Conference on Decision and Control in Sydney Robust and non-fragile $H^{\ingty}$ controller design for affine parameter uncertain systems S. H. Cho;K. T. Kim;H. B. Park
  11. Proc. IEEE Conference on Decision and Control in Florida Parameterized LMIs in control theory P. Apkarian;H. D. Tuan
  12. International Journal of Robust Nonlinear Control v.9 Relaxations of parameterized LMIs with control applications H. D. Tuan;P. Apkarian https://doi.org/10.1002/(SICI)1099-1239(199902)9:2<59::AID-RNC392>3.0.CO;2-O
  13. Linear Matrix Inequalities in System and Control Theory S. Boyd;L. E. Ghaoui;E. Feron;V. Balakrishnan
  14. International Journal of Robust Nonlinear Control v.4 A linear matrix inequality approach to $H^{\ingty}$ control P. Gahinet;P. Apkarian https://doi.org/10.1002/rnc.4590040403