Melt and Recrystallization Behavior of Syndiotactic Polypropylene and Isotactic Polypropylene

신디오택틱 폴리프로필렌과 아이소택틱 폴리프로필렌의 용융과 재결정화

  • Lee, Sang-Won (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Huh, Wan-Soo (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Hyun, Uk (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Noh, Seok-Kyun (School of Chemical Engineering and Technology, Youngnam University)
  • 이상원 (숭실대학교 환경화학공학과) ;
  • 허완수 (숭실대학교 환경화학공학과) ;
  • 현욱 (숭실대학교 환경화학공학과) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 노석균 (영남대학교 응용화학공학부)
  • Published : 2003.11.01

Abstract

It was found that polypropylene shows rearrangement of crystal structure during the melting process. For the analysis of recrystallization behavior, the change of dynamic mechanical property, crystallinity, and crystal structure were studied by DSC, FT-IR, SAXS, and DMA. Melt-recrystallization-remelting behavior of iPP was clearly observed when iPP was cooled down kom the melt more rapidly. Elastic modulus of iPP increased during the recrystallization process but crystallinity of iPP shows constant value. Furthermore, the full width of half mean of SAXS pattern decreased about 30%, and intra-lamella ordering of iPP increased during the melt process but is was not found for sPP.

신디오택틱 폴리프로필렌 (sPP)과 아이소택틱 폴리프로필렌 (iPP)은 용융과정에서 결정의 재배열이 나타나며 이와 같은 재결정 현상을 해석하기 위하여 결정화도와 결정구조의 변화, 동역학적 물성을 고찰하였고 DSC, FT-IR, SAXS, DMA를 이용하였다. 본 연구에서 실험된 조건에서는 sPP의 재결정화 현상을 확인할 수 없었으며, iPP는 용융으로부터 냉각되는 속도가 빠르게 될 수록 재가열시 재결정화 현상이 두드러졌다. iPP의 재결정화가 진행되는 동안 tan $\delta$가 0.119에서 0.101로 감소하여 탄성율이 증가한 결과를 보이나 결정화도는 거의 일정하게 유지되었다. 더욱이 재결정 현상이 진행되는 동안 SAXS 산란피크의 반가폭이 약 30% 감소하여 라멜라의 질서가 증가하는 거동을 보였다.

Keywords

References

  1. J. Polym. Sci., Polym. Phys. Ed. v.27 J.T.Yeh;J.P.Runt https://doi.org/10.1002/polb.1989.090270714
  2. Macromolecules v.17 P.B.Rim;J.P.Runt https://doi.org/10.1021/ma00138a017
  3. Macromolecules v.22 Y,Lee;R.S.Porter;J.S.Lin https://doi.org/10.1021/ma00194a043
  4. Macromolecules v.20 Y.Lee;R.S.Porter https://doi.org/10.1021/ma00172a028
  5. Macromol. Chem. Phys. v.200 R.A.Philips;R.L.Jones https://doi.org/10.1002/(SICI)1521-3935(19990801)200:8<1912::AID-MACP1912>3.0.CO;2-N
  6. Polypropylene Handbook R.A.Philips;M.D.Wolkowicz
  7. J.M.S-Macromol. Chem. Phys. v.C35 no.1 R.A.Jonahira;B.Zhengzheng(et al.)
  8. Polymer v.16 S.J.Bobbs;C.F.Partt https://doi.org/10.1016/0032-3861(75)90258-X
  9. J. Polym. Phys. v.16 G.Groeninckx;H.Reynaers;H.Berghmans;G.Smets
  10. Macromolecules v.31 C.DeRosa;F.Auriemma;V.Viniti https://doi.org/10.1021/ma9805248
  11. Polym. Eng. Sci. v.28 J.F.Gerard https://doi.org/10.1002/pen.760280905
  12. Dynamic Mechanical Analysis K.P.Menard
  13. Polymer(Korea) v.22 I.Kim;S.W.Lee;Y.T.Kim
  14. J. Appl. Polym. Sci. v.36 D.R.Burfield;S.T.Patrick https://doi.org/10.1002/app.1988.070360203
  15. J. Am. Chem. Soc. v.110 J.A.Ewen;R.L.Jones;A.Razvi;J.D.Ferrara https://doi.org/10.1021/ja00226a056
  16. Organometallis v.15 L.Resconi;R.L.Jones;A.L.Rheingold;G.P.Yap https://doi.org/10.1021/om950197h
  17. Structure Analysis by Small-Angle X-ray and Neutron Scattering L.A.Foeign;D.L.Svergun
  18. J. Polymer Sci., Polym. Phys. Ed. v.18 G.R.Strobl;M.Schneider https://doi.org/10.1002/pol.1980.180180614
  19. Macromolecules v.27 M.Imai;K.Kaji;T.Kanaya https://doi.org/10.1021/ma00102a016