Comparison of the Crystallization Behavior of Syndiotactic Polypropylene and Isotactic Polypropylene

신디오택틱 폴리프로필렌과 아이소택틱 폴리프로필렌의 결정화 거동 비교

  • Lee, Sang-Won (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Huh, Wan-Soo (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Hyun, Uk (Department of Chemical & Environmental Engineering, Soongsil University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Noh, Seok-Kyun (School of Chemical Engineering & Technology, Yeoungnam University)
  • 이상원 (숭실대학교 환경화학공학과) ;
  • 허완수 (숭실대학교 환경화학공학과) ;
  • 현욱 (숭실대학교 환경화학공학과) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 노석균 (영남대학교 화학공학부)
  • Published : 2003.11.01

Abstract

The study was made to compare the crystallization behavior of polypropylene (PP) with different stereo-regularity. The unit cell parameters, lamellar structure of PP, and the growth of thieir spherulites were strongly dependent upon the crystallization condition. It was shown that metastable structure appeared with increasing cooling rate. The structural change of isotactic PP (iPP) was larger than that of syndiotactic PP (sPP). The crystal structure of sPP showed body centered cell III when it is cooled down with 1 $^{\circ}C$/min. When sPP was grown to primitive cell II structure, both unit cell and lamellar structure were less affected by a cooling rate. The overall crystallization rate of ipp was faster than that of sPP.

입체규칙성이 다른 폴리프로필렌 (PP)의 결정화 거동을 비교하였다. 결정화 조건은 신디오택틱 폴리프로필렌 (sPP)과 아이소택틱 폴리프로필렌 (iPP)의 단위 결정 격자, 라멜라 구조, 구정의 성장에 영향을 주었다. 냉각속도가 증가할수록 결정 구조의 안정성이 감소하였으며, 냉각속도에 따른 구조적 변화는 iPP 가 sPP보다 크게 나타났다. sPP는 1 $^{\circ}C$/min 이하의 속도로 서냉될 때 body centered cell H의 fully antichiral packing 구조를 형성하였고 sPP가 primitive cellII구조를 형성할 때, 결정 격자와 라멜라 구조는 열이력의 영향을 작게 받은 것으로 확인되었다. 최대 결정화 온도에서 결정화 속도는 iPP가 sPP보다 빠르게 나타났다.

Keywords

References

  1. Polymer(Korea) v.3 J.M.Park;K.Y.Eom
  2. Macromol. Chem. Phys. v.200 R.Thomann;J.Kressler;S,Stez;C.Wang;R.Mulhaupt https://doi.org/10.1002/(SICI)1521-3935(19990801)200:8<1912::AID-MACP1912>3.0.CO;2-N
  3. Macromol. Chem. Phys. v.200 R.A.Phillips;R.L.Jones https://doi.org/10.1002/(SICI)1521-3935(19990801)200:8<1912::AID-MACP1912>3.0.CO;2-N
  4. Polymer(Korea) v.22 J.Jin;J.Ok;S.S.Kim;K.Song
  5. Polymer v.12 T.Ozawa
  6. Polymer v.16 S.J.Hobbs;C.F.Partt https://doi.org/10.1016/0032-3861(75)90258-X
  7. J. Polym. Phys. v.16 G.Groeninckx;H.Reynaers;H.Berghmans;G.Smets
  8. Thermochim. Acta. v.126 A.V.Sahenoy;D.R.Saini https://doi.org/10.1016/0040-6031(88)87246-0
  9. Polym. Eng. Sci. v.28 Y.P.Khanna;T.J.Taylor https://doi.org/10.1002/pen.760281605
  10. Handbook of Polyolefins C.Vasile;R.B.Seymour
  11. J. Chem. Phys. v.85 A.Ziabicki
  12. Coll. Polym. Sci. v.261 H.Muschik https://doi.org/10.1007/BF01451668
  13. Macromolecules v.27 J.Andrew;A.J.Lovinger;B.Lotz;D.D.Davis;M.Schumacher https://doi.org/10.1021/ma00100a053
  14. Polymer v.35 J.Rodringuez-Amold(et al.) https://doi.org/10.1016/0032-3861(94)90978-4
  15. Macromolecular Physics B.Wunderlich
  16. Structure Analysis by Small-Angle X-ray and Neutron Scattering L.A.Foeign;K.I.Svergun
  17. J. Polym. Sci. Polym., Polym. Phys. Ed. v.18 G.R.Strobl;M.Schneider https://doi.org/10.1002/pol.1980.180180614
  18. Macromolecules v.27 M.Imai;K.Kaji;T.Kanaya https://doi.org/10.1021/ma00102a016
  19. Polymer v.37 R.Thomann;J.Kressler;S.Setz;C.Wang;R.Mulhaupt
  20. Macromolecules v.17 J.Elizabeth;J.Clark;D.Hoffman https://doi.org/10.1021/ma00134a058