DOI QR코드

DOI QR Code

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (II) - Life Prediction and Failure Mechanism -

냉간 가공된 316L 스테인리스 강의 저주기 피로 거동에 미치는 온도의 영향 (II) - 수명예측 및 파손 기구 -

  • 홍성구 (한국과학기술원 기계공학과) ;
  • 윤삼손 (한국과학기술원 기계공학과) ;
  • 이순복 (한국과학기술원 기계공학과)
  • Published : 2003.10.01

Abstract

Tensile and low cycle fatigue tests on prior cold worked 3l6L stainless steel were carried out at various temperatures ftom room temperature to 650$^{\circ}C$. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM.

Keywords

References

  1. Kim, D. W., Ryu, U. S. and Hong, J. H., 2000, The Korean Institute of Metals and Materials Trans., 13(8), pp. 36-42
  2. Kanazawa, K., Yamaguchi, K., Nishijima, S., 1988, ASTM STP 942, pp. 519-530
  3. J. Nihoul and J. Ward. Elsevier Applied Science In High Temperature Alloys,Their Exploitable Potential Bressers,J.;J.B.Marriott(ed.);M.Merz(ed.)
  4. Bressers, J., 1987, In High Temperature Alloys, Their Exploitable Potential, ed. J. B. Marriott, M. Merz, J. Nihoul and J. Ward. Elsevier Applied Science, Amsterdam, pp. 385-410
  5. Valsan, M., Sastry, D. H., Bhanu Sankara Rao, K., Mannan S. L., 1995, Metall. Trans., 25A, pp. 159
  6. Srinivasan, V. S., Sandhya, R., Bhanu Sankara Rao, K., Mannan, S. L., Raghavan, K. S., 1991, Int. J. Fat., 13(6), pp. 471 https://doi.org/10.1016/0142-1123(91)90482-E
  7. Srinivasan, V. S., Valsan, M., Sandhya, R., K. Bhanu Sankara Rao, Mannan, S. L., Sastry, D. H., 1999, Int. J. Fat., 21, pp. 11-21 https://doi.org/10.1016/S0142-1123(98)00052-8
  8. Hong, S. G., Lee, S. B., 2002, KSME Trans. A, 26(3), pp. 521-527 https://doi.org/10.3795/KSME-A.2002.26.3.521
  9. Landgraf, R. W., 1970, in 'Achievement of High Fatigue Resistance in Metals and Alloys,' ASTM STP 467, pp. 3-36
  10. Coffin, L.F., Jr., 1954, ASME Trans., 76, p. 931
  11. O. H. Basquin, 1910, 'The Exponential Law of Endurance Tests,' Am. Soc. Test. Mater. Proc., 10, pp. 625-630
  12. Morrow, J.D., 1964, ASTM STP 378, p. 45
  13. Wareing, J., 1983, Fatigue at High Temperature, ed. R.P.Skelton, Applied Science Publishers, Barking, p. 142
  14. Ostergren, W. J., 1976, ASME-MPC symposium on creep/fatigue interaction, MPC-3, New York
  15. Driver, J.H., Gorier, C., Belrami, C., Vidan, P., Amzallag, C., 1988, ASTM STP 942, p. 438