Inducible Expression of the Lactadherin Gene with a Reverse Tetracycline-Regulated Retroviral Vector System

Tetracycline으로 발현이 유도되는 Retrovirus Vector System을 이용한 Human Lactadherin 유전자의 전이와 발현

  • 이용석 (대구가톨릭대학교 의과대학 병리학교실) ;
  • 오훈규 (계명대학교 의과대학 병리학교실) ;
  • 권모선 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 박창식 (충남대학교 동물자원과학부, 충남대학교 형질전환복제돼지 연구센터) ;
  • 김태완 (대구가톨릭대학교 의과대학 생리학교실, 충남대학교 형질전환복제돼지 연구센터) ;
  • 박재복 (대구가톨릭대학교 의과대학 병리학교실)
  • Published : 2003.09.01

Abstract

Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinoma cells and is known to prevent symptomatic rotavirus infections. In this study, we tried to transfer the human lactadherin gene to the Chinese Hamster Ovary (CHO) cells using retrovirus vector system and tested inducible expression of the gene under the tetracycline-controllable promoter. At first, tetracycline-mediated inducibility was tested using E.coli LacZ marker gene. NIH3T3 cells co-infected with RevTet-On and RevTRE-LacZ retrovirus vectors showed that the cells responded to doxycycline (a derivative of tetracycline) in a dose-dependent manner, and prominent induction of the lacZ gene expression was observed from 1 $\mu\textrm{g}$/ml of doxycycline concentration. Based on the results of the pilot experiment, inductional expression of the human lactadherin gene was conducted using RevTet-On and RevTRE-Ltd retrovirus vectors. Analysis with the RT-PCR demonstrated successful inductional expression of the lactadherin gene in the Chinese Hamster Ovary (CHO) cells. Considering that constitutive overexpression of the exogenous genes in the target cells causes serious physiological imbalance, the results obtained in this study will be very useful especially in the studies of gene therapy and transgenic animal production.

모유에 존재하는 유지방구의 막을 구성하는 주된 당단백질인 하나인 lactadherin(과거에는 BA46로 일컬어짐)은 rotavirus에 의한 감염증상을 예방하는 것으로 보고되고 있다. 본 연구에서는 retrovirus vector system을 이용하여 Chinese Hamster Ovary (CHO) 세포에 tetracycline에 의해 발현이 제어되는 promoter 하의 lactadherin 유전자를 전이 시킨 후 lactadherin이 tetracycline에 의해 발현이 유도되는지의 여부를 실험하였다. 먼저 기초 실험으로 대장균의 LacZ 유전자를 이용하여 tetracycline에 의한 유도 여부를 시험하였다. RevTet-On과 RevTRE-LacZ retrovirus를 동시감염시킨 NIH3T3는 doxycycline (tetracycline 유도체)에 의해 투여량에 비례하여 반응정도가 증가하는 양상을 나타내었으며 최대의 반응은 doxycycline 농도가 1 $\mu\textrm{g}$/ml 이상에서부터 관찰되었다. 이 예비실험의 결과를 바탕으로 RevTet-On과 RevTRE-Ltd retrovirus vectyor를 이용하여 사람의 lactadherin 유전자의 유도적 발현을 검정하였는데 CHO 세포에서 lactadherin 유전자의 유도적 발현을 RT-PCR 기법을 이용하여 확인하였다. 표적세포 내에서 외부에서 도입된 유전자가 지속적으로 발현될 경우 심각한 생리적 부작용을 야기시킨다는 사실을 감안할 때 본 실험의 결과는 유전자 치료와 형질전환동물의 생산에 크게 도움이 될 것으로 예상된다.

Keywords

References

  1. Ackland-Berglund, C. E. and Leib, D. A. 1995. Efficacy of tetracycline-controlled gene expression is influenced by cell type. Biotechniques 18:196-200
  2. Bohl, D., Naffakh, N. and Heard, J. M. 1997. Long-term control of erythropoietin secretion by doxycycline in mice with engineered primary myoblast. Nature Med. 3:299-305 https://doi.org/10.1038/nm0397-299
  3. Bohl, D., Salvetti, A., Moullier, P. and Heard, J. M. 1998. Control of Erythropoietin Delivery by Doxycycline in Mice After Intramuscular Injection of Adeno-Associated Vector. Blood 92: 1512-1517
  4. Gossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89:5547-5551
  5. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W. and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766-1769
  6. Kim, T., Lee, Y. M., Lee, H. T., Heo, Y. T., Yom, H.-C., Kwon, M. S., Koo, B. C., Whang, K. and Roh, K. S. 2001. Expression of the E. coli LacZ gene in chicken embryos using replication defective retroviral vectors packaged with vesicular stomatitis virus G glycoprotein envelopes. Asian-Aust. J. Anim. Sci. 14:163-169 https://doi.org/10.5713/ajas.2001.163
  7. Kistner, A, Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbert, H. and Bujard, H. 1996. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93:10933-10938
  8. Lamartina, S., Silvi, L., Roscilli, G., Casimiro, D., Simon, A. J., Davis, M-E, Shiver, J. W., Rinaudo, C. D., Zampaglione, J., Fattori, E., Colloca, S., Paz, O. G., Laufer, R., Bujard H., Cortese, R, Ciliberto, G. and Toniatti, C. 2003. Construction of an $rtTA2^s-M2/tTS^{kid}$-based transcription regualtory switch that displays no basal activity, good inducibility and high responsiveness to Doxycycline in mice and nonhuman primates. Mol. Ther. 7:271-280 https://doi.org/10.1016/S1525-0016(02)00051-5
  9. Mansuy, I. M. and Bujard, H. 2000. Tetracycline-regulated gene expression in the brain. Curr. Opin. NeuroBiol. 10:593-596 https://doi.org/10.1016/S0959-4388(00)00127-6
  10. Mayford, M., Bach, M. E., Huang, Y.-Y., Wang, L., Hawkins, R. D. and Kandel, E. R. 1996. Control of mamary formation through regulated-expression of a CaMK transgene. Science 274:1678-1683 https://doi.org/10.1126/science.274.5293.1678
  11. Newburg, D. S., Peterson, J. A., Ruiz-Palacios, G. M., Matson, D.O., Morrow, A. L., Shults, J., Guerrero, M. L., Chaturvedi, P., Newburg, S. O., Scallan, C. D., Taylor, M. R., Ceriani, R. L. and Pickering, L. K. 1998. Role of human-milk lactadherin in protection against symptomatic rotavirus infection. Lancet 351:1160-1164 https://doi.org/10.1016/S0140-6736(97)10322-1
  12. Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A. and Glass, R. I. 2003. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9:565-572 https://doi.org/10.3201/eid0905.020562
  13. Peterson, J. A., Hamosh, M., Scallan, C. D., Ceriani, R. L., Henderson, T. R., Mehta, N. R. Armond, M. and Hamosh, P. 1998. Milk fat globule glycoproteins in human milk and in gastric aspirates of mother's milk-fed preterm infants. Pediatr. Res. 44:499-506 https://doi.org/10.1203/00006450-199810000-00006
  14. Rossi, F. M. V. and Blau, H. M. 1998. Recent advances in inducible gene expression systems. Curr. Opin. Biotechnol. 9:451-456 https://doi.org/10.1016/S0958-1669(98)80028-1
  15. Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563-564
  16. Strathdee, C. A., McLeod, M. R. and Hall, J. R. 1999. Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 229:21-29 https://doi.org/10.1016/S0378-1119(99)00045-1
  17. Taylor, M. R., Couto, J. R., Scallan, C. D., Ceriani, R. L. and Peterson, J. A. 1997. Lactadherin(formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp(RGD)-dependent cell adhesion. DNA Cell BioI. 16:861-869 https://doi.org/10.1089/dna.1997.16.861
  18. Tichelaar, J. W., Lu, W. and Whitsett, J. A. 2000. Conditional expression of fibroblast growth factor-7 in the developing and muture lung. J. BioI. Chem. 275:11858-11864 https://doi.org/10.1074/jbc.275.16.11858
  19. Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H. and Hillen, W. 2000. Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97:7963-7968
  20. Zhu, Z., Ma, B., Homer, R. J., Zheng, T. and Elias, J. A. 2001. Use of the tetracycline-controlled transcriptional sillencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J. BioI. Chem. 276:25222-25229 https://doi.org/10.1074/jbc.M101512200
  21. Zhu, Z., Zheng, T., Lee, C. G., Homer, R. J. and Elias, J. A. 2002. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Cell Develop. BioI. 13:121-128 https://doi.org/10.1016/S1084-9521(02)00018-6