• Title/Summary/Keyword: Ltd gene

Search Result 585, Processing Time 0.021 seconds

Gene Expression Analysis of Anticancer Drug Induced Hepatotoxicity Using cDNA Microarray

  • Lee, Gyoung-Jae;Kim, Yang-Suk;Jung, Jin-Wook;Hwang, Seung-Yong;Park, Joon-Suk;Kang, Kyung-Sun;Lee, Yong-Soon;Chon, Man-Suk;Chon, Kum-Jin;Kang, Jong-Soo;Kim, Dong-Hyean;Park, Young-Keun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.141-149
    • /
    • 2006
  • Tamoxifen (TAM), a non-steroidal anti estrogen anticancer drug and chemopreventive agent for breast cancer, have caused cholestasis in liver. The potent hepatocarcinogenicity of this drug has been reported. Methotrexate (MTX) is dihydrofolate reductase inhibitor which interfaces with the synthesis for urine nucleotide and dTMP. And it may cause atrophy, necrosis and steatosis in liver. These two anticancer drug have well-known hepatotoxicity. So, in this study we compare the gene expression pattern of antitumor agent TAM and MTX, using the cDNA microarray. We have used 4.8 K cDNA microarray to identify hepatotoxicity-related genes in 5-week-old male Sprague-Dawley (SD) rats. Confirm the pattern of gene expression, we have used Real time PCR for targeted gene. In the case of MTX, Protease related gene (Ctse, Ctsk) and Protein kinase (Pctk 1) have shown specific expression pattern. And in the case of TAM, apoptosis related gene (Pdcd 8) and signal transduction related gene (kdr) have significantly up regulated during treatment time. Gene related with growth factor, lipid synthesis, chemokins were significantly changed. From the result of this study, the information about influence of TAM and MTX to hepatoxicity will provide.

Assessment of Risks and Benefits of Using Antibiotics Resistance Genes in Mesenchymal Stem Cell-Based Ex-Vivo Therapy

  • Narayan Bashyal;Young Jun Lee;Jin-Hwa Jung;Min Gyeong Kim;Kwang-Wook Lee;Woo Sup Hwang;Sung-Soo Kim;Da-Young Chang;Haeyoung, Suh-Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.438-447
    • /
    • 2023
  • Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

Gene Expression Analysis of Methotrexate-induced Hepatotoxicity between in vitro and in vivo

  • Jung, Jin-Wook;Kim, Seung-Jun;Kim, Jun-Sup;Park, Joon-Suk;Yeom, Hye-Jung;Kim, Ji-Hoon;Her, Young-Sun;Lee, Yong-Soon;Kang, Jong-Soo;Lee, Gyoung-Jae;Kim, Yang-Seok;Kang, Kyung-Sun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The recent DNA microarray technology enables us to understand gene expression profiling in cell line and animal models. The technology has potential possibility to comprehend mechanism of multiple genes were related to compounds which have toxicity in biological system. So, microarray system has been used for the prediction of toxicity through gene expression induced by toxicants. It has been shown that compounds with similar toxic mechanisms produce similar changes in gene expression in vivo system. Here we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver and cell line (WB-F344). Methotrexate (MTX) is a chemotherapy agent that has been used for many years in the treatment of cancer because it affects cells that are rapidly dividing. Also it has been known the toxicity of MTX, in a MTX abortion, it stops embryonic cells from dividing and multiplying and is a non-surgical method of ending pregnancy in its early stages. We have shown DNA microarray analyses to assess MTX-specific expression profiles in vivo and in vitro. Male Sprague-Dawely VAF+ albino rats of 5-6 weeks old and WB-F344 cell line have been treated with MTX. Total RNA was isolated from Rat liver and cell line that has treated with MTX. 4.8 K cDNA microarray in house has been used for gene expression profiling of MTX treatment. We have found quite distinct gene expression patterns induced by MTX in a cell line and in vivo system.

Gene Cloning, High-Level Expression, and Characterization of an Alkaline and Thermostable Lipase from Trichosporon coremiiforme V3

  • Wang, Jian-Rong;Li, Yang-Yuan;Liu, Danni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.845-855
    • /
    • 2015
  • The present study describes the gene cloning and high-level expression of an alkaline and thermostable lipase gene from Trichosporon coremiiforme V3. Nucleotide analysis revealed that this lipase gene has an open reading frame of 1,692 bp without any introns, encoding a protein of 563 amino acid residues. The lipase gene without its signal sequence was cloned into plasmid pPICZαA and overexpressed in Pichia pastoris X33. The maximum lipase activity of recombinant lipase was 5,000 U/ml, which was obtained in fed-batch cultivation after 168 h induction with methanol in a 50 L bioreactor. The purified lipase showed high temperature tolerance, and being stable at 60℃ and kept 45% enzyme activity after 1 h incubation at 70℃. The stability, effects of metal ions and other reagents were also determined. The chain length specificity of the recombinant lipase showed high activity toward triolein (C18:1) and tripalmitin (C16:0).

Msp I RFLP of the Human Apolipoprotein AI Gene in Korean Elite Athletes

  • Kang, Byung-Yong;Lee, Kang-Oh;Oh, Sang-Duk;Bae, Joon-Seol;Yoon, Tae-Joong;Jeong, Han-Min;Kim, Ki-Tae
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.243-247
    • /
    • 2002
  • Prolonged exercise is known to increase steady-state serum high-density lipoprotein cholesterol (HDL-cholesterol) and apolipoprotein AI(apo AI) concentrations. We investigated the effect of adaptation to endurance exercise on the association of the genetic polymorphism in the apo AI gene with these biochemical parameters. 108 male subjects were randomly selected from a group of elite athletes, and 65 male samples used as sedentary control group from Korean general population. The genetic polymorphism in the apo AI gene locus was detected by polymerase chain reaction(PCR) and DNA digestion with Msp I restriction endonuclease. The genotype frequency for the Msp I RFLP was significantly different between the elite athletes and sedentary controls(P<0.05). There were, however, no significant associations between the Msp I RFLP of the apo AI gene and the biochemical parameters in elite athletic group. Therefore, our findings indicate that the Msp I RFLP of the apo AI gene was not associated with the serum apo AI and HDL-cholesterol concentrations in Korean male elite athletes.

  • PDF

Universal-, Genus-specific, Species-specific Probes and Primers Design for Microbial Identification

  • Park, Jun-Hyung;Park, Hee-Kyung;Song, Eunsil;Jang, Hyun-Jung;Kang, Byeong-Chul;Lee, Seung-Won;Kim, Hyun-Jin;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.399-401
    • /
    • 2005
  • MIPROBE is a web-based tool for design of universal, genus-specific, and species-specific primers and probes. The main functions of MIPROBE are collection of target gene sequences, construction of consensus sequences, collection of candidate primers and probes, and evaluation of candidates by BLAST. Biologists with little computer skills can easily use MIPROBE to design large-scale universal, genus-, and species-specific primers and probes. This software is available at http://www.miprobe.com. Also detailed descriptions of how to use the program are found at this site.

  • PDF

Genetic Variations in Six Candidate Genes for Insulin Resistance in Korean Essential Hypertensives

  • Bae, Joon-Seol;Kang, Byung-Yong;Kim, Ki-Tae;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.341-346
    • /
    • 2001
  • Hypertension is a complex disease with strong genetic influences. Essential hypertension has been shown to be associated with insulin resistance. To clarify the genetic basis of insulin resistance in Hypertension, case-control association studies were performed to examine candidate genes for insulin resistance in hypertension. Polymorphisms investigated were the BstO I polymorphism of the $\beta$3-adrenergic receptor (ADRB3) gene, the Xba I Polymorphism of the glycogen synthase (GSY) gene, the Dde I polymorphism of the protein phosphatase 1 G subuit (PP1G) gene, the BstE II polymorphism of the glucagon receptor (GCG-R) gene, the Pst 1 polymorphism of the insulin (INS) gene and the Acc I polymorphism of the glucokinase (GCK) gene. No significant differences were observed in the distribution of alleles and genotypes of the ADRB3, GSY PP1G, GCG-R, INS, and GCK genes between hypertensive and normotensive groups. Although the frequencies in each of these polymorphisms were not significantly different between essential hypertensive and normotensive individuals, our results may provide additional information for linkage analysis and associative studies of disorders in carbohydrate metabolism or in cardiovascular disease.

  • PDF

Development of transgenic disease-resistant root stock for the growth of watermelon

  • Cho, Song-Mi;Chung, Soo-Jin;Moon, Sun-Jin;Kim, Kwang-Sang;Kim, Young-Cheol;Cho, Baik-Ho
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.62-65
    • /
    • 2004
  • To protect the watermelon against soil-borne pathogens, we are currently producing disease-resistant transgenic root stock for the growth of watermelon, A defensin gene (J1-1) from Capsicum annum, a ACC deaminase gene from Pseudomonas syringae, a galactinol synthase (CsGolS) gene from Cucumis sativus, and a WRKY (CvWRKY2) gene from Citullus vulgaris were used as transgenes for disease resistance. The gene were transformed into a inbred line (6-2-2) of watermelon, Kong-dae watermelon and a inbred line (GO702S) of gourd, respectively, by Agrobacterium-mediated transformation. Putative transgenic plants were selected in medium containing 100mg/L kanamycin, and then integration of the genes into the genomic DNA were demonstrated by PCR analysis. Successful integration of the gene in regenerated plants was also confirmed by PCR (Figf 1), genomic Southern blot (Fig 2), RT-PCR (Fig 3), and Northern blot analysis(Fig 4). Several T1 lines having different transgene were produced, and disease resistance of the T1 lines are under estimation.

  • PDF

Lack of Association between the S20G Missense Mutation of Amylin Gene and Essential Hypertension in Korean Population

  • Kang, Byung-Yong;Bae, Joon-Seol;Kim, Jae-Hyoun;Om, Ae-Son;Ryu, Jae-Chun;Eo, Hyun-Seon;Shin, Jae-Hyun;Shin, Jung-Hee;Lee, Chung-Choo;Kim, Ki-Tae
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.72-76
    • /
    • 2001
  • Essential hypertension is a heterogeneously multifactorial disease in which blood pressure is harmfully high without overt cause. Both genetic and environmental factors have been implicated in its etiology. In view of the regulatory role of this peptide in the carbohydrate metabolism and renin-angiotensin system, amylin gene has been proposed to a candidate gene for essential hypertension. Therefore, we scanned the amylin gene for mutations in 133 Korean normotensives and 61 essential hypertensives by single-strand conformational polymorphism, and found a single heterozygous S20G missense mutation. However, no significant difference was observed between normotensives and essential hypertensives in the distribution of allele and genotype frequencies of this mutation at the amylin gene (P>0.05). This finding suggests that S20G missense mutation of the amylin gene are unlikely to contribute to the etiology of essential hypertension in the Korean population.

  • PDF