Expression of Secretion-dedicated Srb Homologue and Antifungal Activity of Bacillus lentimorbus WJ5

Bacillus lentimorbus WJ5의 분비 전용 Srb Homologue 발현과 항진균 활성

  • 장유신 (한국원자력연구소 방사선이용연구부) ;
  • 이영근 (한국원자력연구소 방사선이용연구부) ;
  • 김재성 (한국원자력연구소 방사선이용연구부) ;
  • 조규성 (한국원자력연구소 방사선이용연구부) ;
  • 장병일 (한국원자력연구소 방사선이용연구부)
  • Published : 2003.09.01

Abstract

Bacillus sp. secretes high levels of extracellular enzymes into the culture medium. The signal recognition particle (SRP) and the SRP receptor play a central role in targeting pre secretory proteins to the translocase. By the analysis of the DNA microarray of B. lentimorbus WJ5, it was detected that WJ5m12, antifungal activity deficient mutant induced by gamma radiation, had a down-regulated expression of the SRP receptor gene (B. subtitis srb homologue, srbL). To determine the relationship of SRP receptor to antifungal activity, srbL of B. lentimorbus WJ5 was amplified by PCR and ligated into pQE30 vector, and then transferred into WJ5m12. The transformant, WJ5m12::srbL, recovered the antifungal activity. From the 2-DE analysis, the several presecretory proteins accumulated in the mutant cell and decreased to a level of the wild type in WJ5m12::srbL. It seems that the srbL could play an important role in the secretion of the antifungal activity related proteins of B. lentimorbus WJ5.

Bacillus sp.는 다량의 효소와 기능성 펩타이드들을 세포외로 분비하는 것으로 알려져 있다. Signal recognition particle (SRP)과 SRP receptor는 세포외 분비 단백질의 이동에 있어서 중심적 역할을 담당한다. B. lentimorbus WJ5의 DNA microarray 결과, 감마선 조사로 유도된 항진균 활성 결핍 돌연변이체인 WJ5m12에서 B. subtilis srb homologue (srbL)의 발현이 감소되는 것을 관찰할 수 있었다. SRP receptor와 항진균 활성 사이의 연관성을 고찰하기 위하여 B. lentimorbus WJ5의 srbL을 PCR로 증폭하여 pQE30 vector에 클로닝 하였으며, B. lentimorbus WJ5m12에 형질전환 시켰다. 형질전환된 B. lentimorbus WJ5m12::srbL은 항진균 활성이 복원되었다. 이차원 전기영동 결과, 수 종의 세포외 분비 단백질의 전구체들이 항진균 활성 결핍 돌연변이 균주에서 축적되었고 B.lentimorbus WJ5m12::srbL에서는 야생형 균주의 단백질 수준까지 감소되는 현상을 관찰할 수 있었다. 이는 B.lentimorbus WJ5의 항진균 활성 관련 물질의 이동에 있어서 srbL이 중요한 역할을 한다는 것을 암시한다.

Keywords

References

  1. Phytopathol. v.81 Lack of a role for fluorescent siderophore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida Pauliz,T.C.;J.E.Lopper https://doi.org/10.1094/Phyto-81-930
  2. Proc. Natl. Acad. Sci. USA v.92 Molecular mechanisms of defense by rhizobacteria against root disease Cook,R.J.;L.S.Thomashow;D.M.Weller;D.Fujimoto;M.Mazzola;G.Bangera;D.S.Kim https://doi.org/10.1073/pnas.92.10.4197
  3. J. Biol. Chem. v.276 Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis Eppelmann,K.;S.Doekel;M.A.Marahiel https://doi.org/10.1074/jbc.M104456200
  4. Appl. Microbiol. Biotechnol. v.32 Genetic complementation of Streptomyces tendae deficient in nikkomycin production Bormann,C.;K.Aberle;H.P.Fiedler;H.Schrempf https://doi.org/10.1007/BF00903777
  5. Science v.284 Phylogenetic perspectives in innate immunity Hoffmann,J.A.;F.C.Kafatos;C.A.Janeway;R.A.Ezekowitz https://doi.org/10.1126/science.284.5418.1313
  6. Nature v.415 Antimicrobial peptides of multicellular organisms Zasloff,M. https://doi.org/10.1038/415389a
  7. Biochim. Biophys. Acta v.1462 Mechanism of the binding, insertion and destabilization of phospholipid bilayer membrances by α-helical antimicrobial and cell non-selective membrane-Iytic peptides Shai,Y. https://doi.org/10.1016/S0005-2736(99)00200-X
  8. Biochim. Biophys. Acta v.1462 Why and how are peptide-liped interactions utilized for self-defense? Magainins and tachyplesins as archetypes Matsuzaki,K. https://doi.org/10.1016/S0005-2736(99)00197-2
  9. Biophys. J. v.79 Crystallization of antimicrobial pores in membranes:magainin and protegrin Yang,L.;T.M.Weiss;R.I.Lehrer;H.W.Huang https://doi.org/10.1016/S0006-3495(00)76448-4
  10. Microbiol. Mol. Biol. Rev. v.64 Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome Tjalsma,H.;A.Bolhuis;J.D.H.Jongbloed;S.Bron;J.M.van DijI https://doi.org/10.1128/MMBR.64.3.515-547.2000
  11. J. Bacteriol. v.175 Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. Honda,K.;K.Nakamura;M.Nishiguchi;K.Yamane https://doi.org/10.1128/jb.175.15.4885-4894.1993
  12. Trends Microbiol. v.9 The signal recognition particle of Archaea Jerry,E.;M.Ralf https://doi.org/10.1016/S0966-842X(01)01954-0
  13. FEMS Microbiol. Lett. v.195 Effect of depletion of FtsY on spore morphology and the protein composition of the spore coat layer in Bacillus subtilis Hiroshi,K.;T.Hiromu;A.Reiko;N.Kouji;W.Kazuhito;Y.Kunio https://doi.org/10.1111/j.1574-6968.2001.tb10495.x
  14. Vert. Microbiol. v.67 The GroES antigens of Mycobacterium avium and Mycobacterium paratuberculosis Cobb,A.J.;R.Frothingham https://doi.org/10.1016/S0378-1135(99)00019-X
  15. Kor. J. Microbiol. v.38 GroES expression related to antifungal activity of Streptomyces sp. SAR01 Lee,Y.K.;J.S.Kim;K.S.Cho;B.I.Jang;C.H.Choo
  16. Kor. J. Microbiol. DNA microarray analysis of gene expression in antifungal bacterium of Bacillus WJ5 Lee,Y.K.;J.S.Kim;Y.S.Jang;K.S.Cho;H.H.Chang
  17. Radiat. Phys.Chem. v.57 Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities Lee,Y.K.;H.H.Chang;J.S.Kim;K.S.Lee https://doi.org/10.1016/S0969-806X(99)00310-2
  18. J. Microbiol. v.41 Mutation spectrum of manganese (Ⅱ) peroxidase gene in Pleurotus ostreatus mutants induced by gamma radiation Chang.H.H.;Y.K.Lee;J.S.Kim;K.S.Lee.;K.S.Cho
  19. Proc. Natl. Acad. Sci. USA v.91 Effective amplification of long targets from cloned inserts and human genomic DNA Cheng,S.;C.Fockler;W.Barnes;R.Higuchi https://doi.org/10.1073/pnas.91.12.5695
  20. J. Microbiol. Methods v.34 High osmolarity improves the electro-transformation efficiency of the grampositive bacteria Bacillus subtilis and Bacillus lichenifromis Xue,G.P.;J.S.Johnson;B.P.Dalrymple https://doi.org/10.1016/S0167-7012(98)00087-6
  21. Electrophoresis v.22 Two-dimensional electrophoretic analysis of rice proteins by polyethyleneglycol fractionation for protein arrays Kim,S.T.;K.S.Cho;Y.S.Jang;K.Y.Kang https://doi.org/10.1002/1522-2683(200106)22:10<2103::AID-ELPS2103>3.0.CO;2-W
  22. J. Biol. Chem. v.250 High resolution two-dimensional electrophoresis of proteins O'Farrell,P.H.
  23. Microbiology v.146 Proteome analysis of Bacillus subtilis extracellular proteins : a two-dimensional protein electrophoretic study Hirose,I.;K.Sano;I.Shioda;M.Kumano;K.Nakamuar;K.Yamane https://doi.org/10.1099/00221287-146-1-65