Effect of GC Content on Target Hook Required for Gene Isolation by Transformation-Associated Recombination Cloning

Transformation-associated recombination cloning에 의한 유전자 분리에 사용되는 target hook에 대한 GC content의 영향

  • 김중현 (동아대학교 자연과학대학 생물학과) ;
  • 신영선 (동아대학교 자연과학대학 생물학과) ;
  • 윤영호 (동아대학교 자연과학대학 생물학과) ;
  • 장형진 (동아대학교 자연과학대학 생물학과) ;
  • 김은아 (동아대학교 자연과학대학 생물학과) ;
  • 김광섭 (동아대학교 자연과학대학 생물학과) ;
  • 정정남 (동아대학교 자연과학대학 생물학과) ;
  • 박인호 (동아대학교 자연과학대학 생물학과) ;
  • 임선희 (동아대학교 자연과학대학 생물학과)
  • Published : 2003.09.01

Abstract

Transformation-associated recombination (TAR) cloning is based on co-penetration into yeast spheroplasts of genomic DNA along with TAR vector DNA that contains 5'- and 3'-sequences (hooks) specific for a gene of interest, followed by recombination between the vector and the human genomic DNA to establish a circular YAC. Typically, the frequency of recombinant insert capture is 0.01-1% for single-copy genes by TAR cloning. To further refine the TAR cloning technology, we determined the effect of GC content on target hooks required for gene isolation utilizing the $Tg\cdot\AC$ mouse transgene as the targeted region. For this purpose, a set of vectors containing a B1 repeated hook and Tg AC-specific hooks of variable GC content (from 18 to 45%) was constructed and checked for efficiency of transgene isolation by radial TAR cloning. Efficiency of cloning decreased approximately 2-fold when the TAR vector contained a hook with a GC content ~${\leq}23$% versus ~40%. Thus, the optimal GC content of hook sequences required for gene isolation by TAR is approximately 40%. We also analyzed how the distribution of high GC content (65%) within the hook affects gene capture, but no dramatic differences for gene capturing were observed.

Transformation-associated recombination (TAR) 클로닝법은 목적 유전자를 포함한 게놈 DNA와 그 유전자의 5' 또는 3' 말단 서열을 포함하고 있는 선형의 TAR vector를 동시에 출아효모의 spheroplast내로 co-penetration 시켜 상동부위에서 일어나는 재조합에 의해 환형의 Yeast Artification Chromosome(YAC)으로 분리되는 방법이다. 일반적으로 TAR 클로닝법에 의한 목적의 single-copy 유전자 분리 빈도는 전체 형질전환체의 0.01~1% 정도이다. 이러한 TAR 클로닝법을 개선하기 위하여 Tg.AC transgenic mouse를 모델계로 사용하여 유전자 분리에 대한 target hook 내의 GC content 가 미치는 영향을 조사하였다. 이러한 목적으로 한쪽에는 다양한 GC content(18~45%)를 지닌 transgene 특이적 hook을 포함하고 다른 한쪽은 B1 반복서열을 가지는 radial TAR vector를 사용하여 transgene 분리 빈도를 측정하였다. 그 결과 target hook의 GC content는 23% 이하의 경우, ~40%인 경우에 비해 두 배 정도 클로닝 빈도가 감소하였다. 따라서 TAR vector를 제작할 때, 유전자 분리에 이용되는 target hook의 GC content는 약 40% 일때 가장 적정한 것으로 나타났다. 또한 높은 target hook 내의 GC content(65%)위치분포에 의한 차이는 클로닝 빈도에 큰 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Mol. Cell. Biol. v.4 Most highly repeated dispersed DNA families in the mouse genome Bennett,K.L.;R.E.Hill;D.F.Pieras;M. Wood worth-Guta;C.Kane-Haas;J.M.Houston;J.K.Heath;N.D.Hastie https://doi.org/10.1128/MCB.4.8.1561
  2. Science v.236 Cloning of large segments of DNA into yeast by means of artificial chromosome vectors Burke,D.T.;G.F.Carle;M.V.Olson https://doi.org/10.1126/science.3033825
  3. Nature Genet. v.1 Construction of a mouse yeast artificial chromosome library in a recombination-deficient strain of yeast Chartier,F.L.;J.T.Keer;M.J.Sutcliffe;D.A.Henriques;P.Mileham;S.D.Brown https://doi.org/10.1038/ng0592-132
  4. Nature v.287 Isolation of a yeast centromere and construction of a functional small circular chromosome Clarke,L.;J.Carbon https://doi.org/10.1038/287504a0
  5. Nucleic Acids Res. v.29 Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces Gray,M.;S.M.Honigberg https://doi.org/10.1093/nar/29.24.5156
  6. Genomics v.11 Detection and characterization of chimeric yeast artificial-chromosome clones Green,E.D.;H.C.Riethman;J.E.Dutchik;M.V.Olsen https://doi.org/10.1016/0888-7543(91)90073-N
  7. Oncogene v.22 Separation of long-range human TERT gene haplotypes by transformation-associated recombination cloning in yeast Kim,J.H.;S.H.Leem;Y.Sunwoo;N,Kouprina https://doi.org/10.1038/sj.onc.1206316
  8. Genomics v.21 A model system to assess the integrity of mammalian YACs during transformation and propagation in yeast Kouprina,N.;M.Eldarov;R.Moyzis;M.Resuick;V.Larionov https://doi.org/10.1006/geno.1994.1218
  9. Proc. Natl. Acad. Sci. USA v.88 Yeast artificial chromosome libraries containing large inserts from mouse and human DNA Larin,Z.;A.P.Monaco;H.Lehrach https://doi.org/10.1073/pnas.88.10.4123
  10. Nucleic Acids Res. v.22 Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast(YACs) Larionov,V.;N.Kouprina;N.Nikolaishvili;M.A.Resnick https://doi.org/10.1093/nar/22.20.4154
  11. Proc. Natl. Acad. Sci. USA v.93 Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination Larionov,V.N.;N.Kouprira;J.Graves;X.N.Chen;J.R.Korenberg;M.A,Resnick https://doi.org/10.1073/pnas.93.1.491
  12. Nucleic Acids Res. v.29 no.6 Defining the minimal length of sequence homology required for selective gene isolation by TAR cloning Larionov,V.N.;M.Koriabine;G.Solomon;M,Randolph;J.C.Barrett;S.H.Leem;L.Stubbs;N.Kouprina;V.Larionov https://doi.org/10.1093/nar/29.6.e32
  13. Genet. Eng. Princ. Methods v.21 Direct isolation of specific chromosomal regions and entire genes by TAR cloning Larionov,V.
  14. Oncogene v.21 The human telomerase gene:complete genomic sequence and analysis of tandem repeat polymorphisms in intronic regions Leem,S.H.;J.A.Londono-Vallejo;J.H.Kim;H.Bui;E.Tubacher;G.Solomom;J.E.Park;I.Horikawa;N.Kouprina;J.C.Barrett;V.Larionov https://doi.org/10.1038/sj.onc.1205122
  15. Nucleic Acid Res. v.31 Optimum conditions for selecive isolation of genes from complex genomes by transformation-associated recombination cloning Leem,S.H.;V.N.Noskov;J.E.Park;S.I.Kim;V.Larionov;N.Kouprina https://doi.org/10.1093/nar/gng029
  16. Gene v.58 Plasmid construction by homologous recombination in yeast Ma,H.;S,Kunes;P.J.Schatz;D.Botstein https://doi.org/10.1016/0378-1119(87)90376-3
  17. Molecular cloning a laboratory manual Maniatis,T.;E.F.Fritsch;J.Sanbrook
  18. Gene v.155 Construction of a human DNA library in a circular centromere-based yeast plasmid McGonigal,T.;P.Bodell;C.Schopp;A.V.Sarthy https://doi.org/10.1016/0378-1119(94)00887-X
  19. Nature v.305 Construction of artificial chromosomes n yeast Murray,A.W.;J.W.Szostak https://doi.org/10.1038/305189a0
  20. Nucleic Acids Res. v.18 Structrual instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors Neil,D.L.;A.Villasante;R.B.Fisher;D.Vetrie;B.Cox;C.Tyler-Smith https://doi.org/10.1093/nar/18.6.1421
  21. Genetics v.162 Context dependence of meiotic recombination hotspots in yeast: The relationship between recombination activity of a reporter construct and base composition Petes,T.D.;J.D.Merker
  22. Laboratory course of manual for methods in yeast genetics Sherman,F.;G.R.Fink;J.B.Hicks
  23. Proc. Natl. Acad. Sci. USA v.86 Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector Shizuya,H.;B.Birren;U.J.Kim;V.Mancine;T.Slepak;Y.Tachiiri;M.Simon
  24. Proc. Natl. Acad. Sci. USA v.77 Eukaryotic DNA segments capable of autonomous replication in yeast Stinchomb,D.T.;M.Thomas;Kelly,I.;E.Selker;R.W.Davis https://doi.org/10.1073/pnas.77.8.4559
  25. Proc. Natl. Acad. Sci. USA v.94 The ARS 309 chromosomal replicator of Sacchromyces cerevisiae depends on an exceptional ARS consensus sequence Theis,J.F.;C.S.Newlon https://doi.org/10.1073/pnas.94.20.10786