References
-
Indiana Uni. Math. J.
v.21
$L(p,∞)^ *$ M.Cwikel;Y.Sagher - Studia Math. v.45 On the conjugates of some function spaces M.Cwikel https://doi.org/10.4064/sm-45-1-49-55
- Studia Math. v.69 Maximal seminorm on wL₁ M.Cwikel:C.Fefferman
- Studia Math. v.78 The canonical seminorm on wL₁ M.Cwikel https://doi.org/10.4064/sm-78-3-275-278
- Interscience VII Linear Operator I: General Theory. Pure and Applied Mathematics N.Dunford;J.T.Schwartz
- Bull. Korean. Math. Soc. v.35 no.3 Banach subspaces and envelope norm of wL₁ JeongHeung Kang
- Math. Ann. v.269 The L₁-structure of wL₁ J.Kupka;T.Peck https://doi.org/10.1007/BF01451421
- Isreal J. Math. v.121 The normed and Banach envelopes of weakL¹ Denny H.Leung https://doi.org/10.1007/BF02802506
- Classical Banach Spaces II Lindenstrauss;Tzafriri
- Proc. Amer. Math. Soc. v.126 Sublattices of the Banach envelope of WeakL₁ H.P.Lotz;T.Peck https://doi.org/10.1090/S0002-9939-98-03506-0
- Israel. J. Math. v.59 Banach sublattices of WeakL₁ T.Peck;M.Talagrand https://doi.org/10.1007/BF02774140