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Lp SPACES STRUCTURE OF THE
BANACH ENVELOPE OF WEAKIL!

JEONGHEUNG KANG

ABSTRACT. The Banach envelope of WeakL; contains a comple-
mented Banach sublattice that is isometrically isomorphic to Ly (u)
space.

1. Introduction

In this paper we will show that the Banach envelope of WeakL; (de-
noted wL;) contains a complemented Banach sublattice that is isometri-
cally isomorphic to L, () space where p is a separable probability mea-
sure. For 1 < p < oo, we can find a lattice isometry T : Ly(n) — wLq
such that the range of T is a complemented subspace of the Banach
envelope of WeakL,. In [7, Theorem 3.7}, J. Kupka and T. Peck proved
that there exists a lattice isometry 7" from L, into wL; such that the
range of T is a complemented subspace of wLj. In [11, Theorem 1}, T.
Peck and M. Talagrand proved that if E is a separable Banach lattice
with order continuous norm, then there is a lattice isometry of E into
wLj. Since L, (1 < p < o) is also a sublattice of wL;, naturally we
can ask that L, is also a complemented sublattice of wL;. We will give
answer for this question. The main result of this paper is the extension
of J. Kupka and T. Peck’s theorem 3.9.in [7].

The space WeakL;, as a Lorentz space L(1,00), was introduced in
analysis when key operators of harmonic analysis did not map L; into
L,. As examples of such operators, one can give the Hardy-Littlewood
maximal function and the Hilbert transform. It became natural to
investigate WeakL,, the space of measurable functions f satisfying
p({z € Q¢ |f(x)] > y}) < §, from these important operators in analysis.
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It is known that (except for some trivial measure space), WeakL;
is not normable (see [1]). The question therefore arose as to whether
any nontrivial continuous linear functionals on WeakL; exists. In [1,
Theorem 6], the answer for this question was observed. This implies
WeakL; has a nontrivial dual space. In [7], J. Kupka and T. Peck
studied the structure of WeakL;. They showed that the space Lo, is
dense in the dual of WeakL; with weak*-topology and showed lattice
embeddings of Ly, 11[0,1], lo and ¢[0,1) into wL; where wL; is the
Banach envelope of WeakL;. Later on, T. Peck and M. Talagrand
proved that every separable order continuous Banach lattice is lattice
isometric to a sublattice of wL; in [11, Theorem 1]. Finally, H. Lotz
and T. Peck removed the hypothesis of order continuity in the separable
case, in [10, Theorem 2].

As a Lorentz space, we'll study the space L(1,00) which is called
WeakL; (denote wL,).

(1.1) wLly = {f € Lo: p({z € Q: |f(2)] > ¥}) < g},

where ¢ > 0 is independent of y > 0. As we mentioned , wL; is not
normable, but we can find nontrivial linear functionals on wL;. This
was first observed by M. Cwikel and Y. Sagher in [1, Theorem 6].

In (3], if u is nonatomic, then we can get an equivalent integral-like
seminorm

1
(12) £t = Jim sup - i
n—o00as, Ind Jo<ii<qy

Later on, in [4] actually the Banach envelope seminorm on wl; was
calculated to be exactly as above. Note that the seminorm on wl;
defined in (1.2) is a lattice seminorm. This is not quite obvious, but using
integration by parts one can readily show that the seminorm || - ||z, is
exactly same as (see [7, 1.5])

1
(1.3) lim sup

q
Jim sup o [ o € s @) > i
=™ p YP

Even though wL; is complete with respect to the quasinorm ¢(f) =
SUPgsoa p{x € Q: |f(z)| > a}, it is not complete with respect to the
seminorm || - [|y,z; . This is due to M. Cwikel and C. Feffreman in [3] and
also we can see this in (7, 1.4]. Let N = {f € wL; : ||f|lwz; = 0}. Then
we obtain the quotient space wL,/N. We define wL; as the normed
envelope (and its completion as the Banach envelope) of wL;.
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2. L, space structure in wl;

To study this subject, we need some basic facts about the dual of
wL;. We would like to change nonlinear limit superior expression (1.4)
for || - [lwz, into a linear expression by directing the number I3(f) =
Ini%— f{aﬁlflgb} |fldw in some fashion. By [4, Section 1], we can define

(1.4) as
(2.1) Ifllwz, = lim (sup{Ig(f) : b/a > n}).

For this, we introduce an ultrafilter I/ so that the limit of the I® along
U will determine a canonical integral-like linear functional I, € wL;.

We now construct an ultrafilter U (see [7, Section 2.1]). For n =
1,2,--, let F, = {(a,b) : 1 <a < b2 >n}and then define F = {F, :
n > 1}. Treating F as a filter of subsets of the set § = [1,00) X [1,00),
we obtain from Zorn’s lemma an ultrafilter &/ of subsets of S such that
F C U. From now, we'll fix the ultrafilter F C U. The significance of
the ultrafilter property lies in the fact that for every function f € wLq,
and for every integer » sufficiently large {I2(f) : (e, b) € F,.} is bounded,
so that the limit [ = limy, I2(f) always exists(for every € > 0, there is a
set U € U such that |I2(f) — | < € whenever (a,b) € U).

Define the “ersatz integral” I for every nonnegative function f &€
wLi by Iy(f) = limy I2(f). For more properties of I/(f), refer to
[7, 2.3 key lemmal]. We define for an arbitrary function f € wL, by
Lu(f) = Iu(ft) — Iu(f~). Then we have |Iy(f)| < ||fllwz,- Define
I 7 lle = Lu(|f]). Note that (see [7, 2.12])

(2.2) Ifllee < N fllwois -

For the dual of wL;(or wLs), we state the theorem which is due to
J. Kupka and T. Peck in (7, 2.8].

THEOREM 2.1. Define a linear operator Ty : Loo(p) — wLi by
Tyu(m)(f) = Iy(mf) for al m € Ly, and for all f € wL,. Then Ty
constitutes an isometric order isomorphism of Lo.(u) into wL;. More-
over, the linear span of the subspaces Ty (Loo(i1)), as U ranges over the
collection of ultrafilter (of subset of S) which contain F constitutes a
norming, and hence a weak™ dense, subspace of wLj.

The operator T3y of Theorem 2.1 determines an isometric order iso-
morphic embedding of L., (u) into wLy(U)* where wL,(U) = wL(U)/
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Ny and Ny = {f € wLy : ||fllu = 0}. Moreover, the range of this
embedding is norming, and hence weak™ dense in wL(U)*.

Let L(U) = {f € wLi||| fllwz; = || fllee}. Then L) is a closed subset
of wLj(see [6]) and if f is a i-like function, then ||fllwz, = ||fllu =
Tu(f).

LEMMA 2.2. If ¢ # 0 is a linear functional on wLy(U), then ¢ is a
linear functional on wLq with ||¢]| # 0.

PRrROOF. Let ¢ # 0 be a linear functional on wL;(U). Then for any
f € wLj with || flle > 0 (since f € wL4 is also regarded as f € wL,(U)).

0 < oD < el fllee
<ol fllwz; by (2.2).

Hence, {[¢{| # 0 on wi;. This implies ¢ # 0 is a linear functional on
’LULi. O

We now give a lemma about linear functionals on wZ; which is actu-
ally due to J. Kupka and T. Peck (see [7, 2.20]).

LemMA 2.3. For a ultrafilter U defined as above, let f € wL; be a
nonnegative function with || f|lx = 1. Then for any g € wL,, disjointly
supported from f, we can find a positive ¢ € wL? such that ol = 1,

¢(f) =1 and ¢(g) = 0.

Let (fn)92, be a sequence of nonnegative elements in wL; with
|frlle = 1 for all n = 1,2,3,--- and such that the f,, have pairwise
disjoint supports. Applying the inductive argument to Lemma 2.3, for
each f,, we can find a linear functional ¢,, on wL; such that ¢,(f,) =1,

l¢nll =1 and ¢n(frn) = 0 if n # m.

LEMMA 2.4. Let (f,)22, be a sequence of nonnegative elements in
wly such that the f,, have pairwise disjoint supports with ||f,.|lu = 1,
for all n = 1,2,--- and let (¢,)3>, be a sequence of positive linear
functionals on wL; selected as above. Then for any f € wL;, we have

5 16n(A] < 1l

PROOF. For an arbitrary element f € wLj, the number ¢, (f) is the
limit of a subnet of the sequence {I;;(x&, , - f)} where (E, )2, is a
decreasing sequence of subsets of F,, = supp(f,), and f,, is bounded on
E; ., for all k (see (7, 2.20]). Fix n # m, let (En )72, be the decreasing
sequence of measurable sets for f, and (En, k)32, the corresponding
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sequence for fn,. Let r = sgnly(xe, , - f), s = sgnlu(XE,, . - f). Put
M = TXE, ; + 8XE,. . 50 that |m|lc = 1. By Theorem 2.1 and Lemma
2.3, we can identify T7,(m) = ™ as a linear functional on wL;. Then we
have

m(f) = Hu(XEn i O+ Hu(XE i -

= Iy(m- f)

< Imllooll fllee  since |Imlleo =1
= || fllx by (2.2)

< fllwe; -

By the additive rule for nets [5, Lemma 6, p.28], we can say that in the
limit
@) + 16m ()] < [ fllee by (2:2)
Sl fllwz; -

To show 02, [#n(f)] < I fllwe;, it suffices to show that for any
NeN, SN 16n(H)] < I fllwe,- Forn=1,2,--, let (Enx)>, be the
decreasing sequence of measurable sets for f,, and E,, = supp(f,). Let
Tn = Sgn(XE, , - f). Put m = Zivzl TnXE, .- LThen we have ||mlo = 1.
By the same argument as above, one can get

N
Af) =Y Mulxz, . - )l

= Iy(m- f)
< |Imfloollflls  since ||m|lo = 1 and by (2.2)
< ”f“wLi'

By the additive rule for nets [5, Lemma 6, p.28], we can say that in the
limit

N
S aOI< 1l since mllec = 1
n=1

S S llwes -

We can therefore say that > °° | [¢n(f)| < ||fllwz,. This proves the
lemma. g
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We now need to recall the T. Peck and M. Talagrand’s theorem. In
[11, Theorem 1], one can see the following theorem; Let {2 be a set and
Qin,n>0,1<i<2"beaset of Qsuch that Q10 =Q, 0 nNQ;n =0,
ifi #jand Qi = Q2i—1n+1 U Qoing1. Let x;n be the characteristic
function of €; ,, n > 0, 1 < ¢ < 2" and let Y be the linear span of the
functions x; », 7 > 0,1 <7 <27,

THEOREM 2.5 [11, T. Peck and M. Talagrand]. Let X be the
completion of Y under some lattice norm on Y where Y is given the
usual pointwise order. Then there is a lattice isometry of X into wL;.

T. Peck and M. Talagrand constructed for n > 0, 1 < 4 < 2™ under

lattice isometry T', T'x; n=fin, Where fi,nzzmgn 23:1 " egm—n(i—1)4j,m
and each e; ,(z) = wf‘;’; -, T € [Vin,w;n] is a %-like function. Note that
fin are all nonnegativé and pairwise disjointly supported in wL; and
fin = Foin+1 + fait1,n41, for all n, and 1 < ¢ < 2" (see [11, proof of

Theorem 1]).

THEOREM 2.6. For 1 < p < oo, the Banach envelope of WeakL
contains a complemented sublattice that is isometrically isomorphic to
L,(Q,Z, ) where i is a separable probability measure.

PROOF. As an immediate corollary of Theorem 2.5 (see {11, Corollary
2]), we can see that if F is a separable order continuous Banach lattice
then there is a lattice isometry of E into wLj. Since for 1 < p < oo,
L,(u) space is also an order continuous Banach lattice, we can find a
lattice isometry T' of L, into wL; where p is a separable probability
measure. Also for 1 < p < oo, L, space is a reflexive Banach lattice,
T(L,) is a reflexive sublattice wLj. This implies that the unit ball Bry,,
is weakly compact. Since every separable reflexive Banach lattice has
an order continuous norm, L, has an order continuous norm. Hence we
can apply the construction of T in Theorem 2.5. Let (xi)Z.; be the
subset of L, defined in Theorem 2.5. Without loss of generality, one can
assume ||x; || = Lforall 1 <4 < 2" . Then we have 3pan(Xin) 2y C Ly.

Define TX; n = fin, then span(f;») =~ 3pan(xin). Since {X;} form
a dense subset of L,, {fi»} form a dense subset of T'L,. Moreover, for
fixed n, the f;, are pairwise disjointly supported nonnegative elements
in TL, with ||finllwz, = 1. Hence by Lemma 2.3, we can find linear
functionals ¢; ,, on wL; such that @; »(fj,n) = 6;,; and ||¢; n|| = 1, for all
i=1,2,---. For each n, let B, = {fin}2, and define Pp, : wL; —
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W(fi,n)zz:1 CTL, by
gn
(23) P, (f) = $in(f)fin-
i=1
Since, for all f € wL;
gn
1P, (Nllwes = 1 benlF) finllwr,
i=1
on
< Z |¢z,n(f)|“fz,n“le
i=1

2"
< Z |$in(f)| by Lemma 2.4 and || fi nllwr, =1
i=1

(2.4) < [ fllewy -

This implies || Pg, || < 1, and Pp, is a well defined linear map. Moreover,
fj,n €eTL, C wklj,

2"1
PBn (fj,n) = Z ¢i,n(fj,n)fi,n
i=1
= ¢j,n(fj,n)fj,n
(2.5) = fjn-
Hence [P, (fjn)llwz; = [lfjnllwe; = 1, and P3 = Pp,. Hence Pg,

is a projection wL;j onto Tsm(fi,n)fll C TL,. From this, we want
to find a projection P from wL; onto T'L,. We define a partial order
on {B,}5%, by B, < By, if span(f; ) C span(fim). Then for each
B, we have || P, (f)|lwz; < || fllwr,, for all f € wLj by (2.4). Hence
the vector Pp,(f) belongs to {g € TL, : ||gllwr; < ||fllwr;} which is
a weakly compact subset in T'L,. Now consider the following product
space;

(2.6) IT to€TLy: llgloz; < Fllwrs}-
fewL;

Note that by Tychonoff’s theorem, HwaLi{ge TLy: |gllwr; < | fllwr; }
is compact for the weak topology. Hence the net {Ppg_} of projections
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from wL; to TL, has a subnet which converges to some limit point
P, in the topology of pointwise convergence on wLj, taking the weak
topology on T'L,. Let {Pp,_} be a subnet of {Pp, } which converges to
P. Then we have the weak limit P(f) = lim, Pp,_(f), for all f € wL;.
Since each Pp_ is contractive, positive, and norm one, P is contractive,
positive, and norm one.

Finally, we need to show that for all f € TL,, P(f) = f. Since (fin)

are dense, given ¢ > 0 one can find B,, = {f; »} such that || Zf:l aifin—
fllwr; < ¢€/2 for some (a; 2 Letg= 212.:1 a; fin. Then

IP(f) = fllwz, NP(f) = P(@)llwry +11P(9) — gllwr; + 119 — fllwr,
<IP(f = OMwr; + lg = fllwr,
since ||P(g9) — gllwz; =0

< ”f - g“wLi + ||g - f”wLi
<e.

Hence P(f) = f for all f € TL,. Therefore P is a positive norm one
projection from wLj onto T'Ly,. This proves the theorem. a
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