L_P SPACES STRUCTURE OF THE BANACH ENVELOPE OF $WEAKL^1$

JEONGHEUNG KANG

ABSTRACT. The Banach envelope of $WeakL_1$ contains a complemented Banach sublattice that is isometrically isomorphic to $L_p(\mu)$ space.

1. Introduction

In this paper we will show that the Banach envelope of $WeakL_1$ (denoted $wL_{\hat{1}}$) contains a complemented Banach sublattice that is isometrically isomorphic to $L_p(\mu)$ space where μ is a separable probability measure. For $1 , we can find a lattice isometry <math>T: L_p(\mu) \to wL_{\hat{1}}$ such that the range of T is a complemented subspace of the Banach envelope of $WeakL_1$. In [7, Theorem 3.7], J. Kupka and T. Peck proved that there exists a lattice isometry T from L_1 into $wL_{\hat{1}}$ such that the range of T is a complemented subspace of $wL_{\hat{1}}$. In [11, Theorem 1], T. Peck and M. Talagrand proved that if E is a separable Banach lattice with order continuous norm, then there is a lattice isometry of E into $wL_{\hat{1}}$. Since L_p ($1) is also a sublattice of <math>wL_{\hat{1}}$, naturally we can ask that L_p is also a complemented sublattice of $wL_{\hat{1}}$. We will give answer for this question. The main result of this paper is the extension of J. Kupka and T. Peck's theorem 3.9 in [7].

The space $WeakL_1$, as a Lorentz space $L(1,\infty)$, was introduced in analysis when key operators of harmonic analysis did not map L_1 into L_1 . As examples of such operators, one can give the Hardy-Littlewood maximal function and the Hilbert transform. It became natural to investigate $WeakL_1$, the space of measurable functions f satisfying $\mu(\{x \in \Omega : |f(x)| > y\}) \leq \frac{c}{y}$, from these important operators in analysis.

Received April 8, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 46B03.

Key words and phrases: complemented sublattices, Banach envelope of $WeakL_1$, reflexive Banach sublattice.

It is known that (except for some trivial measure space), $WeakL_1$ is not normable (see [1]). The question therefore arose as to whether any nontrivial continuous linear functionals on $WeakL_1$ exists. In [1, Theorem 6], the answer for this question was observed. This implies $WeakL_1$ has a nontrivial dual space. In [7], J. Kupka and T. Peck studied the structure of $WeakL_1$. They showed that the space L_{∞} is dense in the dual of $WeakL_1$ with $weak^*$ -topology and showed lattice embeddings of L_1 , $l_1[0,1]$, l_{∞} and $c_0[0,1]$ into $wL_{\hat{1}}$ where $wL_{\hat{1}}$ is the Banach envelope of $WeakL_1$. Later on, T. Peck and M. Talagrand proved that every separable order continuous Banach lattice is lattice isometric to a sublattice of $wL_{\hat{1}}$ in [11, Theorem 1]. Finally, H. Lotz and T. Peck removed the hypothesis of order continuity in the separable case, in [10, Theorem 2].

As a Lorentz space, we'll study the space $L(1, \infty)$ which is called $WeakL_1$ (denote wL_1).

(1.1)
$$wL_1 = \{ f \in L_0 : \mu(\{x \in \Omega : |f(x)| > y\}) < \frac{c}{y} \},$$

where c > 0 is independent of y > 0. As we mentioned, wL_1 is not normable, but we can find nontrivial linear functionals on wL_1 . This was first observed by M. Cwikel and Y. Sagher in [1, Theorem 6].

In [3], if μ is nonatomic, then we can get an equivalent integral-like seminorm

(1.2)
$$||f||_{wL_{\hat{1}}} = \lim_{n \to \infty} \sup_{\frac{q}{p} \ge n} \frac{1}{\ln \frac{q}{p}} \int_{\{p \le |f| \le q\}} |f| d\mu.$$

Later on, in [4] actually the Banach envelope seminorm on wL_1 was calculated to be exactly as above. Note that the seminorm on wL_1 defined in (1.2) is a lattice seminorm. This is not quite obvious, but using integration by parts one can readily show that the seminorm $\|\cdot\|_{wL_1}$ is exactly same as (see [7, 1.5])

(1.3)
$$\lim_{n\to\infty} \sup_{\frac{q}{x}\geq n} \frac{1}{\ln\frac{q}{p}} \int_{p}^{q} \mu(\{x\in\mu: |f(x)|>t\}) dt.$$

Even though wL_1 is complete with respect to the quasinorm $q(f) = \sup_{a>0} a \ \mu\{x \in \Omega : |f(x)| > a\}$, it is not complete with respect to the seminorm $\|\cdot\|_{wL_{\hat{1}}}$. This is due to M. Cwikel and C. Feffreman in [3] and also we can see this in [7, 1.4]. Let $\mathcal{N} = \{f \in wL_1 : \|f\|_{wL_{\hat{1}}} = 0\}$. Then we obtain the quotient space wL_1/\mathcal{N} . We define $wL_{\hat{1}}$ as the normed envelope (and its completion as the Banach envelope) of wL_1 .

2. L_p space structure in $wL_{\hat{1}}$

To study this subject, we need some basic facts about the dual of $wL_{\hat{1}}$. We would like to change nonlinear limit superior expression (1.4) for $\|\cdot\|_{wL_{\hat{1}}}$ into a linear expression by directing the number $I_a^b(f)=\frac{1}{\ln\frac{b}{a}}\int_{\{a\leq |f|\leq b\}}|f|d\mu$ in some fashion. By [4, Section 1], we can define (1.4) as

(2.1)
$$||f||_{wL_{\hat{1}}} = \lim_{n \to \infty} (\sup\{I_a^b(f) : b/a \ge n\}).$$

For this, we introduce an ultrafilter \mathcal{U} so that the limit of the I_a^b along \mathcal{U} will determine a canonical integral-like linear functional $I_{\mathcal{U}} \in wL_{\hat{1}}^*$.

We now construct an ultrafilter \mathcal{U} (see [7, Section 2.1]). For $n=1,2,\cdots$, let $F_n=\{(a,b):1\leq a< b,\frac{b}{a}\geq n\}$ and then define $\mathcal{F}=\{F_n:n\geq 1\}$. Treating \mathcal{F} as a filter of subsets of the set $S=[1,\infty)\times[1,\infty)$, we obtain from Zorn's lemma an ultrafilter \mathcal{U} of subsets of S such that $\mathcal{F}\subset\mathcal{U}$. From now, we'll fix the ultrafilter $\mathcal{F}\subset\mathcal{U}$. The significance of the ultrafilter property lies in the fact that for every function $f\in wL_1$, and for every integer n sufficiently large $\{I_a^b(f):(a,b)\in F_n\}$ is bounded, so that the limit $l=\lim_{\mathcal{U}}I_a^b(f)$ always exists(for every $\epsilon>0$, there is a set $U\in\mathcal{U}$ such that $|I_a^b(f)-l|<\epsilon$ whenever $(a,b)\in U$).

Define the "ersatz integral" $I_{\mathcal{U}}$ for every nonnegative function $f \in wL_1$ by $I_{\mathcal{U}}(f) = \lim_{\mathcal{U}} I_a^b(f)$. For more properties of $I_{\mathcal{U}}(f)$, refer to [7, 2.3 key lemma]. We define for an arbitrary function $f \in wL_1$ by $I_{\mathcal{U}}(f) = I_{\mathcal{U}}(f^+) - I_{\mathcal{U}}(f^-)$. Then we have $|I_{\mathcal{U}}(f)| \leq ||f||_{wL_1}$. Define $||f||_{\mathcal{U}} = I_{\mathcal{U}}(|f|)$. Note that (see [7, 2.12])

$$(2.2) ||f||_{\mathcal{U}} \le ||f||_{wL_{\hat{1}}}.$$

For the dual of wL_1 (or wL_1), we state the theorem which is due to J. Kupka and T. Peck in [7, 2.8].

THEOREM 2.1. Define a linear operator $T_{\mathcal{U}}: L_{\infty}(\mu) \to wL_1^*$ by $T_{\mathcal{U}}(m)(f) = I_{\mathcal{U}}(mf)$ for all $m \in L_{\infty}$, and for all $f \in wL_1$. Then $T_{\mathcal{U}}$ constitutes an isometric order isomorphism of $L_{\infty}(\mu)$ into wL_1^* . Moreover, the linear span of the subspaces $T_{\mathcal{U}}(L_{\infty}(\mu))$, as \mathcal{U} ranges over the collection of ultrafilter (of subset of S) which contain \mathcal{F} constitutes a norming, and hence a weak* dense, subspace of wL_1^* .

The operator $T_{\mathcal{U}}$ of Theorem 2.1 determines an isometric order isomorphic embedding of $L_{\infty}(\mu)$ into $wL_1(\mathcal{U})^*$ where $wL_1(\mathcal{U}) = wL_1(\mathcal{U})/2$

 $N_{\mathcal{U}}$ and $N_{\mathcal{U}} = \{ f \in wL_1 : ||f||_{\mathcal{U}} = 0 \}$. Moreover, the range of this embedding is norming, and hence $weak^*$ dense in $wL_1(\mathcal{U})^*$.

Let $L(\mathcal{U}) = \{ f \in wL_1 | ||f||_{wL_{\hat{1}}} = ||f||_{\mathcal{U}} \}$. Then $L(\mathcal{U})$ is a closed subset of $wL_{\hat{1}}$ (see [6]) and if f is a $\frac{1}{x}$ -like function, then $||f||_{wL_{\hat{1}}} = ||f||_{\mathcal{U}} = I_{\mathcal{U}}(f)$.

LEMMA 2.2. If $\phi \neq 0$ is a linear functional on $wL_1(\mathcal{U})$, then ϕ is a linear functional on wL_1 with $\|\phi\| \neq 0$.

PROOF. Let $\phi \neq 0$ be a linear functional on $wL_1(\mathcal{U})$. Then for any $f \in wL_1$ with $||f||_{\mathcal{U}} > 0$ (since $f \in wL_1$ is also regarded as $f \in wL_1(\mathcal{U})$).

$$0 < |\phi(f)| \le ||\phi|| ||f||_{\mathcal{U}}$$

$$\le ||\phi|| ||f||_{wL_i} \quad \text{by (2.2)}.$$

Hence, $\|\phi\| \neq 0$ on $wL_{\hat{1}}$. This implies $\phi \neq 0$ is a linear functional on $wL_{\hat{1}}$.

We now give a lemma about linear functionals on $wL_{\hat{1}}$ which is actually due to J. Kupka and T. Peck (see [7, 2.20]).

LEMMA 2.3. For a ultrafilter \mathcal{U} defined as above, let $f \in wL_1$ be a nonnegative function with $||f||_{\mathcal{U}} = 1$. Then for any $g \in wL_1$, disjointly supported from f, we can find a positive $\phi \in wL_1^*$ such that $||\phi|| = 1$, $\phi(f) = 1$ and $\phi(g) = 0$.

Let $(f_n)_{n=1}^{\infty}$ be a sequence of nonnegative elements in $wL_{\hat{1}}$ with $||f_n||_{\mathcal{U}} = 1$ for all $n = 1, 2, 3, \cdots$ and such that the f_n have pairwise disjoint supports. Applying the inductive argument to Lemma 2.3, for each f_n , we can find a linear functional ϕ_n on $wL_{\hat{1}}$ such that $\phi_n(f_n) = 1$, $||\phi_n|| = 1$ and $\phi_n(f_m) = 0$ if $n \neq m$.

LEMMA 2.4. Let $(f_n)_{n=1}^{\infty}$ be a sequence of nonnegative elements in wL_1 such that the f_n have pairwise disjoint supports with $||f_n||_{\mathcal{U}}=1$, for all $n=1,2,\cdots$ and let $(\phi_n)_{n=1}^{\infty}$ be a sequence of positive linear functionals on wL_1 selected as above. Then for any $f\in wL_1$, we have $\sum_{n=1}^{\infty} |\phi_n(f)| \leq ||f||_{wL_1}$.

PROOF. For an arbitrary element $f \in wL_1$, the number $\phi_n(f)$ is the limit of a subnet of the sequence $\{I_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)\}$ where $(E_{n,k})_{k=1}^{\infty}$ is a decreasing sequence of subsets of $E_n = supp(f_n)$, and f_n is bounded on $E_{n,k}^c$ for all k (see [7, 2.20]). Fix $n \neq m$, let $(E_{n,k})_{k=1}^{\infty}$ be the decreasing sequence of measurable sets for f_n and $(E_{m,k})_{k=1}^{\infty}$ the corresponding

sequence for f_m . Let $r = sgnI_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)$, $s = sgnI_{\mathcal{U}}(\chi_{E_{m,k}} \cdot f)$. Put $m = r\chi_{E_{n,k}} + s\chi_{E_{m,k}}$ so that $||m||_{\infty} = 1$. By Theorem 2.1 and Lemma 2.3, we can identify $T_{\mathcal{U}}(m) = \widehat{m}$ as a linear functional on $wL_{\hat{1}}$. Then we have

$$\widehat{m}(f) = |I_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)| + |I_{\mathcal{U}}(\chi_{E_{m,k}} \cdot f)|$$

$$= I_{\mathcal{U}}(m \cdot f)$$

$$\leq ||m||_{\infty} ||f||_{\mathcal{U}} \quad \text{since } ||m||_{\infty} = 1$$

$$= ||f||_{\mathcal{U}} \quad \text{by } (2.2)$$

$$\leq ||f||_{wL_{\hat{1}}}.$$

By the additive rule for nets [5, Lemma 6, p.28], we can say that in the limit

$$|\phi_n(f)| + |\phi_m(f)| \le ||f||_{\mathcal{U}} \quad \text{by (2.2)}$$

 $\le ||f||_{wL_1}.$

To show $\sum_{n=1}^{\infty} |\phi_n(f)| \leq \|f\|_{wL_1}$, it suffices to show that for any $N \in \mathbb{N}$, $\sum_{n=1}^{N} |\phi_n(f)| \leq \|f\|_{wL_1}$. For $n=1,2,\cdots$, let $(E_{n,k})_{k=1}^{\infty}$ be the decreasing sequence of measurable sets for f_n and $E_n = supp(f_n)$. Let $r_n = sgn(\chi_{E_{n,k}} \cdot f)$. Put $m = \sum_{n=1}^{N} r_n \chi_{E_{n,k}}$. Then we have $\|m\|_{\infty} = 1$. By the same argument as above, one can get

$$\widehat{m}(f) = \sum_{n=1}^{N} |I_{\mathcal{U}}(\chi_{E_{n,k}} \cdot f)|$$

$$= I_{\mathcal{U}}(m \cdot f)$$

$$\leq ||m||_{\infty} ||f||_{\mathcal{U}} \quad \text{since } ||m||_{\infty} = 1 \text{ and by } (2.2)$$

$$\leq ||f||_{wL_{\hat{1}}}.$$

By the additive rule for nets [5, Lemma 6, p.28], we can say that in the limit

$$\sum_{n=1}^{N} |\phi_n(f)| \le ||f||_{\mathcal{U}} \quad \text{ since } ||m||_{\infty} = 1$$

$$\le ||f||_{wL_1}.$$

We can therefore say that $\sum_{n=1}^{\infty} |\phi_n(f)| \leq ||f||_{wL_1}$. This proves the lemma.

We now need to recall the T. Peck and M. Talagrand's theorem. In [11, Theorem 1], one can see the following theorem; Let Ω be a set and $\Omega_{i,n}$, $n \geq 0$, $1 \leq i \leq 2^n$ be a set of Ω such that $\Omega_{1,0} = \Omega$, $\Omega_{i,n} \cap \Omega_{j,n} = \emptyset$, if $i \neq j$ and $\Omega_{i,n} = \Omega_{2i-1,n+1} \cup \Omega_{2i,n+1}$. Let $\chi_{i,n}$ be the characteristic function of $\Omega_{i,n}$, n > 0, $1 \leq i \leq 2^n$ and let Y be the linear span of the functions $\chi_{i,n}$, n > 0, $1 \leq i \leq 2^n$.

THEOREM 2.5 [11, T. Peck and M. Talagrand]. Let X be the completion of Y under some lattice norm on Y where Y is given the usual pointwise order. Then there is a lattice isometry of X into $wL_{\hat{1}}$.

T. Peck and M. Talagrand constructed for n > 0, $1 \le i \le 2^n$ under lattice isometry T, $T\chi_{i,n}=f_{i,n}$, where $f_{i,n}=\sum_{m\ge n}\sum_{j=1}^{2^{m-n}}e_{2^{m-n}(i-1)+j,m}$ and each $e_{i,n}(x)=\frac{b_{i,n}}{x-u_{i,n}}$, $x\in [v_{i,n},w_{i,n}]$ is a $\frac{1}{x}$ -like function. Note that $f_{i,n}$ are all nonnegative and pairwise disjointly supported in wL_1 and $f_{i,n}=f_{2i,n+1}+f_{2i+1,n+1}$, for all n, and $1\le i\le 2^n$ (see [11, proof of Theorem 1]).

THEOREM 2.6. For $1 , the Banach envelope of <math>WeakL_1$ contains a complemented sublattice that is isometrically isomorphic to $L_p(\Omega, \Sigma, \mu)$ where μ is a separable probability measure.

PROOF. As an immediate corollary of Theorem 2.5 (see [11, Corollary 2]), we can see that if E is a separable order continuous Banach lattice then there is a lattice isometry of E into $wL_{\hat{1}}$. Since for $1 , <math>L_p(\mu)$ space is also an order continuous Banach lattice, we can find a lattice isometry T of L_p into $wL_{\hat{1}}$ where μ is a separable probability measure. Also for $1 , <math>L_p$ space is a reflexive Banach lattice, $T(L_p)$ is a reflexive sublattice $wL_{\hat{1}}$. This implies that the unit ball B_{TL_p} is weakly compact. Since every separable reflexive Banach lattice has an order continuous norm, L_p has an order continuous norm. Hence we can apply the construction of T in Theorem 2.5. Let $(\chi_{i,n})_{i=1}^{2^n}$ be the subset of L_p defined in Theorem 2.5. Without loss of generality, one can assume $\|\chi_{i,n}\| = 1$ for all $1 \le i \le 2^n$. Then we have $\overline{span}(\chi_{i,n})_{i=1}^{2^n} \subset L_p$.

Define $T\chi_{i,n} = f_{i,n}$, then $\overline{span}(f_{i,n}) \simeq \overline{span}(\chi_{i,n})$. Since $\{\chi_{i,n}\}$ form a dense subset of L_p , $\{f_{i,n}\}$ form a dense subset of TL_p . Moreover, for fixed n, the $f_{i,n}$ are pairwise disjointly supported nonnegative elements in TL_p with $||f_{i,n}||_{wL_1} = 1$. Hence by Lemma 2.3, we can find linear functionals $\phi_{i,n}$ on wL_1 such that $\phi_{i,n}(f_{j,n}) = \delta_{i,j}$ and $||\phi_{i,n}|| = 1$, for all $i = 1, 2, \cdots$. For each n, let $B_n = \{f_{i,n}\}_{i=1}^{2^n}$ and define $P_{B_n} : wL_1 \longrightarrow$

 $\overline{span}(f_{i,n})_{i=1}^{2^n} \subset TL_p$ by

(2.3)
$$P_{B_n}(f) = \sum_{i=1}^{2^n} \phi_{i,n}(f) f_{i,n}.$$

Since, for all $f \in wL_{\hat{1}}$

$$\begin{split} \|P_{B_n}(f)\|_{wL_{\hat{1}}} &= \|\sum_{i=1}^{2^n} \phi_{i,n}(f) f_{i,n}\|_{wL_{\hat{1}}} \\ &\leq \sum_{i=1}^{2^n} |\phi_{i,n}(f)| \|f_{i,n}\|_{wL_{\hat{1}}} \\ &\leq \sum_{i=1}^{2^n} |\phi_{i,n}(f)| \quad \text{by Lemma 2.4 and } \|f_{i,n}\|_{wL_{\hat{1}}} = 1 \\ &\leq \|f\|_{wL_{\hat{1}}}. \end{split}$$

This implies $||P_{B_n}|| \leq 1$, and P_{B_n} is a well defined linear map. Moreover, $f_{j,n} \in TL_p \subset wL_{\hat{1}}$,

$$P_{B_n}(f_{j,n}) = \sum_{i=1}^{2^n} \phi_{i,n}(f_{j,n}) f_{i,n}$$
$$= \phi_{j,n}(f_{j,n}) f_{j,n}$$
$$= f_{j,n}.$$
(2.5)

Hence $\|P_{B_n}(f_{j,n})\|_{wL_{\hat{1}}} = \|f_{j,n}\|_{wL_{\hat{1}}} = 1$, and $P_{B_n}^2 = P_{B_n}$. Hence P_{B_n} is a projection $wL_{\hat{1}}$ onto $\overline{span}(f_{i,n})_{i=1}^{2^n} \subset TL_p$. From this, we want to find a projection P from $wL_{\hat{1}}$ onto TL_p . We define a partial order on $\{B_n\}_{n=1}^{\infty}$ by $B_n \prec B_m$ if $\overline{span}(f_{i,n}) \subset \overline{span}(f_{i,m})$. Then for each B_n , we have $\|P_{B_n}(f)\|_{wL_{\hat{1}}} \leq \|f\|_{wL_{\hat{1}}}$, for all $f \in wL_{\hat{1}}$ by (2.4). Hence the vector $P_{B_n}(f)$ belongs to $\{g \in TL_p : \|g\|_{wL_{\hat{1}}} \leq \|f\|_{wL_{\hat{1}}}\}$ which is a weakly compact subset in TL_p . Now consider the following product space;

(2.6)
$$\prod_{f \in wL_{\hat{1}}} \{ g \in TL_p : ||g||_{wL_{\hat{1}}} \le ||f||_{wL_{\hat{1}}} \}.$$

Note that by Tychonoff's theorem, $\prod_{f \in wL_i} \{g \in TL_p : ||g||_{wL_i} \leq ||f||_{wL_i} \}$ is compact for the weak topology. Hence the net $\{P_{B_n}\}$ of projections

from $wL_{\hat{1}}$ to TL_p has a subnet which converges to some limit point P, in the topology of pointwise convergence on $wL_{\hat{1}}$, taking the weak topology on TL_p . Let $\{P_{B_{n_{\alpha}}}\}$ be a subnet of $\{P_{B_n}\}$ which converges to P. Then we have the weak limit $P(f) = \lim_{\alpha} P_{B_{n_{\alpha}}}(f)$, for all $f \in wL_{\hat{1}}$. Since each P_{B_n} is contractive, positive, and norm one, P is contractive, positive, and norm one.

Finally, we need to show that for all $f \in TL_p$, P(f) = f. Since $(f_{i,n})$ are dense, given $\epsilon > 0$ one can find $B_n = \{f_{i,n}\}$ such that $\|\sum_{i=1}^{2^n} a_i f_{i,n} - f\|_{wL_1} < \epsilon/2$ for some $(a_i)_{i=1}^{2^n}$. Let $g = \sum_{i=1}^{2^n} a_i f_{i,n}$. Then

$$\begin{split} \|P(f) - f\|_{wL_{\hat{1}}} &\leq \|P(f) - P(g)\|_{wL_{\hat{1}}} + \|P(g) - g\|_{wL_{\hat{1}}} + \|g - f\|_{wL_{\hat{1}}} \\ &\leq \|P(f - g)\|_{wL_{\hat{1}}} + \|g - f\|_{wL_{\hat{1}}} \\ & \text{since } \|P(g) - g\|_{wL_{\hat{1}}} = 0 \\ &\leq \|f - g\|_{wL_{\hat{1}}} + \|g - f\|_{wL_{\hat{1}}} \\ &< \epsilon. \end{split}$$

Hence P(f) = f for all $f \in TL_p$. Therefore P is a positive norm one projection from $wL_{\hat{1}}$ onto TL_p . This proves the theorem.

References

- [1] M. Cwikel and Y. Sagher, $L(p, \infty)^*$, Indiana Uni. Math. J. **21** (1972), 782–786.
- [2] M. Cwikel, On the conjugates of some function spaces, Studia Math. 45 (1973), 49-55.
- [3] M. Cwikel and C. Fefferman, Maximal seminorm on wL_1 , Studia Math. **69** (1980), 149–154.
- [4] _____, The canonical seminorm on wL_1 , Studia Math. 78 (1984), 275–278.
- [5] N. Dunford and J. T. Schwartz, Linear Operator I: General Theory. Pure and Applied Mathematics, Interscience VII: New York (1967).
- JeongHeung Kang, Banach subspaces and envelope norm of wL₁, Bull. Korean.
 Math. Soc. 35 (1998), no. 3, 409–420.
- [7] J. Kupka and T. Peck, The L_1 -structure of wL_1 , Math. Ann. **269** (1984), 235–262.
- [8] Denny H. Leung, The normed and Banach envelopes of weakL¹, Isreal J. Math. 121 (2001), 247-264.
- [9] Lindenstrauss and Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- [10] H. P. Lotz and T. Peck, Sublattices of the Banach envelope of WeakL₁, Proc. Amer. Math. Soc. 126 (1998), 75–84.
- [11] T. Peck and M. Talagrand, Banach sublattices of $WeakL_1$, Israel. J. Math. **59** (1987), 257–271.

Department of Mathematics Korea Military Academy Seoul 139-799 Korea *E-mail*: jkang@kma.ac.kr