초록
잡음 예측 최대 유사도(noise predictive maximum likelihood, NPML) 검출기는 잡음 예측/백색화 과정을 비터비 검출기의 가지 메트릭 계산 과정에 삽입하여 데이터 검출의 신뢰성을 높이게 된다. 따라서 기존의 PRML검출기에 잡음 예측기를 포함시킴으로써 그것의 실제 성능이 향상되고 복잡도가 줄어드는 이점이 있다. 본 논문에서는 선형 채널 하에서 랜덤 시퀸스를 적용하였다. 수직 자기 기록 밀도 Kp=2.5에서 잡음 예측 PR-등화 신호에 의한 NP(121)ML과 NP(1221)ML 검출 시스템을 모의 실험을 통해 성능을 분석한 후 VHDL로 구현하여 검증하였다.
Noise predictive maximum likelihood(NPML) detector embeds noise prediction/whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This thesis random sequences are applied to linear channel. In perpendicular magnetic recording density KP=2.5, NP(121)ML and NP(1221)ML detection system which is based on a noise predictive PR-equalized signal are evaluated by the Performance through a computing simulation. Therefore, NPML systems are implemented and are verified by VHDL.