Blind Equalization with Arbitrary Decision Delay using One-Step Forward Prediction Error Filters

One-step 순방향 추정 오차 필터를 이용한 임의의 결정지연을 갖는 블라인드 등화

  • Ahn, Kyung-seung (Department of Electronic Engineering, Chonbuk National University) ;
  • Baik, Heung-ki (Division of Electronics & Information Engineering, Electronics & Information Advanced Technology Research Center, Chonbuk National University)
  • Published : 2003.02.01

Abstract

Blind equalization of communication channel is important because it does not need training signal, nor does it require a priori channel information. So, we can increase the bandwidth efficiency. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind channel equalizer length mismatch as well as for its simple adaptive implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary decision delay. In this paper, we propose method for fractionally spaced blind equalizer with arbitrary decision delay using one-step forward prediction error filter from second-order statistics of the received signals for SIMO channel. Our algorithm utilizes the forward prediction error as training signal and computes the best decision delay from all possible decision delay. Simulation results are presented to demonstrate the performance of our proposed algorithm.

통신 채널에서 블라인드 등화는 전송효율을 저하시키는 훈련신호나 채널의 사전 정보가 필요치 않은 장점 때문에 많은 연구가 진행되어 왔다. 선형예측을 이용한 블라인드 등화는 등화기의 차수 추정 오차에 강인하며 적응 알고리듬을 이용하여 효율적으로 구현할 수 있는 장점이 있다. 하지만 기존의 one-step 선형예측을 이용한 블라인드 등화기는 임의의 결정 지연에 대해서는 구현할 수 없는 단점이 있다. 본 논문에서는 SIMO 채널에서 one-step 순방향 선형예측 필터를 이용하여 임의의 결정 지연을 갖는 블라인드 등화기를 제안한다. 제안한 알고리듬은 순방향 추정 오차를 훈련신호로 사용하여 최적의 결정 지연을 갖는 블라인드 등화기를 구하였으며 모의실험을 통하여 본 논문에서 제안한 알고리듬의 성능을 확인하였다.

Keywords

References

  1. Adaptive Filter Theory S.Haykin
  2. Digital Communication J.G.Proakis
  3. IEEE Trans. Inform. Theory v.40 no.2 Blind identification and equalization based on second-order statistics: A time domain approach L.Tong;G.Xu;T.Kailath
  4. IEEE Trans. Inform. Theory v.41 no.1 Blind channel identification based on second-order statistics: A frequency-domain approach L.Tong;G.Xu;B.Hassibi;T.Kailath
  5. IEEE Trans. Signal Processing v.45 no.3 Prediction error method for second-order blind identification K.Abed-Meraim;E.Moulines;P.Loubaton
  6. IEEE Trans. Signal Processing v.47 no.3 Blind equalization using least-squares lattics prediction J.Mannerkoski;D.P.Taylor
  7. IEEE Trans. Signal Processing v.47 no.3 Fractionally spaced equalization of linear polyphase channels and related blind techniques based on multichannel linear prediction C.B.Papadias;D.T.M.Slock
  8. IEEE Trans. Signal Processing v.48 no.4 Direct blind MMSE channel equalization based on second order statisics J.Shen;Z.Ding
  9. IEEE Trans. Signal Processing v.49 no.1 Performance bounds for multistep prediction-based blind equalization J.Mannerkoski;V.Koivunen;D.P.Taylor
  10. IEEE Trans. Signal Processing v.49 no.1 Sampling and prefiltering effects on blind equalizer design D.K.Borah;R.A.Kennedy;Z.Ding;I.Fijalkow
  11. Proc. IEEE v.78 no.8 Tracking a few extreme singular values and vectors in signal processing P.Commom;G.H.Golub
  12. Proc. ICASSP Further results on blind identification and equalization of multiple FIR channels D.T.Slock;C.B.Papadias
  13. Proc. ICASSP Robust blind channel identification and equalization based on multi-step predictors D.Gesbert;P.Duhamel
  14. Proc. ICASSP Blind equalizers for multipath channels with best equalization delay H.Luo;P.Liu
  15. IEEE Signal Processing Mag. v.13 no.3 Fractionally spaced equalizers:how long should they be? T.R.Treichler;I.Fijalkow;C.R.Johnson
  16. Int J. Adaptive Contr. Signal Process. v.12 no.3 Simulated comparisons of blind equalization algorithms for cold startup applications J.Endres;S.D.Halford;C.R.Johnson;G.B.Giannakis