References
- IEEE Trans. Automat. Contr. v.39 The successive approximation procedure for finite-time optimal control of bilinear system Z. Aganovic;Z. Gajic https://doi.org/10.1109/9.317128
- Linear Optimal Control of Bilinear Systems - with Applications to Singularly Perturbation and Weak Coupling Z. Aganovic;Z. Gajic
- Ricerche di Automatica v.2 On the mathematical models of bilinear systems C. Bruni;G. DiPillo;G. Koch
- IEEE Trans. Automat. Contr. v.45 Exponential stabilization of a class of unstable bilinear systems M. S. Chen;S. T. Tsao https://doi.org/10.1109/9.855570
- IEEE Trans. Automat. Contr. v.45 Stability analysis and bang-bang sliding control of a class of single-input bilinear systems Y. P. Chen;J. L. Chang;K. M. Lai https://doi.org/10.1109/9.887648
- IEEE Trans. Automat. Contr. v.45 Robust stabilization of a class of singularly perturbed discrete bilinear systems J. S. Chiou;F. C. Kung;T. H. S. Li https://doi.org/10.1109/9.863604
- Journal of Optimization Theory and Applications An iterative method for the finite-time bilinear quadratic control problem E. Hofer;B. Tibken
- Proc. of the 15th IFAC World Congress on Automatic Control Stabilizing control for discrete time multi-input bilinear systems B. S. Kim;Y. J. Kim;M. T. Lim;B. Kim
- Proc. IEEE Conference on Decision and Control Finite time optimal control for the bilinear system by using the successive approximation method B. S. Kim;M. T. Lim
- Dynamics of Continuous, Discrete and Impulsive Systems - Series B: Applications & Algorithms v.9 no.2 Near optimal control for singularly perturbed bilinear systems using the method of successive approximations B. S. Kim;M. T. Lim
- Nonlinear Systems - Applications to Bilinear Control R. Mohler
- Control of Nonlinear Uncertain Systems Z. Qu, Robust
-
Proc. IEEE Conference on Decision and Control
v.2
Robust
$H_{\infty}$ output feedback control for bilinear systems C. A. Teolis;S. Yuliar;M. R. James;J. S. Baras -
IEEE Trans. Automat. Contr.
v.37
$L_2$ -gain analysis of nonlinear systems and nonlinear$H_{\infty}$ state feedback control A. J. van der Schaft