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Robust H,,Control Method for Bilinear Systems

Beom-Soo Kim and Myo-Taeg Lim

Abstract: In this paper, we investigate a robust H_, state feedback control technique for con-
tinuous time bilinear systems with an additive disturbance input. The nonlinear robust H, con-
trol for bilinear systems requires a solution to the state dependent algebraic Riccati equation
(SDARE). We present a new robust H, control technique based on the successive approxima-
tion method for solving the SDARE by converting bilinear systems into time-varying linear sys-
tems. The proposed control method guarantees robust stability for closed loop bilinear systems.
The proposed algorithm is verified by numerical examples.

Keywords: Robust control, H_, control, bilinear systems, optimal control, successive approxi-

mation.

1. INTRODUCTION

Bilinear systems represent many real physical proc-
esses, thus it is important to understand their real
properties, guarantee their global stability, improve
their performance by applying various control tech-
niques to bilinear systems themselves rather than their
linearized systems since the linearization of bilinear
systems loses its natural properties. Indeed, some lin-
earization of a nonlinear system around an equilibrium
point yields a bilinear system. Mohler [11] presents
detailed reviews of bilinear systems and their control
design methods.

During the past twenty years, robust H_ optimiza-
tion became one of the most interesting and challeng-
ing areas of optimal control and filtering theories and
their application. The main advantage of H_ optimi-
zation comes from the fact that such obtained control-
lers and filters are robust to internal and external dis-
turbances. The difficulty associated with the robust
H_, control for nonlinear or bilinear systems, however,
is in solving the state dependent H  algebraic Riccati
equation (SDARE).

In optimal regulation problems of bilinear systems,
only simple cases can obtain optimal control in the
explicit feedback form [2]. In finite-time optimal con-
trol problem of continuous time bilinear systems,
Hofer et al. [7] and Aganovic et al. [1] propose some
numerical procedures. Hofer’s main results state that
finite-time optimal control of bilinear systems is de-
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rived by a sequence of differential Riccati equations
[7]. Robust stabilization problems for bilinear systems
have been widely studied by many researchers [4-6].
Teolis et al. [13] report robust H_ output feedback
control for bilinear systems using the information state

In this paper, we present a robust H_, state feed-
back control technique using van der Schaft’s [14]
results and Kim and Lim’s [10] successive approxima-
tion method for solving the SDARE. This control
technique has the following steps: (i) obtain the stabi-
lizing robust control for the linear system constructed
by ignoring the multiplicative terms of the bilinear
systems; (ii) convert the bilinear systems into the
time-varying form by using the result of the previous
step and solve the algebraic H,, Riccati equation de-
rived by updating the performance index containing
the L, -gain concept and the associated Hamilton-
Jacobi-Isaacs (HII) equation; (iii) iterate step (ii) until
the convergence of state is satisfied.

2. PRELIMINARIES

We first introduce some necessary notations and

quote some relevant results. Let R™! denote the usual
n dimensional vector space and let the norm of a vec-

tor x= [xl X, ]T be denoted by

n 1/2
nx||=[;x3] | "

The norm of 4 € R is defined by
1/2
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where a; is an (i,j) -th clement of A and the

weighted 2-norm ||x||2Q is defined by x’ Ox. The fol-

lowing lemma and corollary are used to prove the
convergence of the proposed algorithm (Their proofs
can be found in [8]).

Lemma 1 [8]: Considering the vector x e R™ and
M; e R™™ with i=12,---,n, then the
following relation holds:

matrix

n n
i=l i=l
with
1 1 1
) Pim
n3  n’ n
1 on5 on
Np=| M T T )
n n n
o By o Ay
where n,-lj‘- is an(i,j)-th element of the M, matrix.

An i-th row of X; e R™", i=1,2---nis x' and the
other rows of X are zero vectors.
Corollary 1[8]: The norm for equation (3) has the

relation
n
[ <t ®

n
zxiM i
i=1
where N;is defined in equation (4).

We consider the robust H_ control problem of

continuous time bilinear systems with an additive dis-
turbance given by

n
xX= Ax+[B+Zx,~M,}u +Ew, x(ty) = xp,

i=1

(6)
z=Cx+Du,

where x e R™ represents a state vector,u € R™is a
control vector, we R™! denotes the disturbance input
with we L, [to,tf], ze R is the penalty function
to be used in the cost function, and 4,B,C,D,E,

and M, are constant matrices of appropriate dimen-
sions.

van der Schaft’s nonlinear robust H,, control prob-
lem [14] designs a controller that robustly stabilizes
the closed loop in the sense of the L, -gain concept
since the H_ norm on the transfer function matrix of

linear systems equals the L, -induced system norm on

its impulse response matrix [12]. Thus, the nonlinear
robust H_ control guarantees that the performance

index shown in equation (7) below remains within an
upper bound for a given positive number

1 2
Tty wstgot ) =5 e ).

I 2 20 12 ™
w2 [ el -7 o e

with 7 <t <o and S, >0. The Hamiltonian H

corresponding to the system in equation (6) and per-
formance index in equation (7) is

1
=l -2 185

+ AT [Ax+Ew+(B+{xM})u],

®)

n

where {xM } = le-M ;and A e R™is the Lagrangian
i=1

multiplier. Then the optimal control is

u=—R"B" —aja &) 9)
X

and the worst disturbance input is

w=—L g7 XD (10)
Y ox

n
where B = B+Zx,~M~

i

and J(x) satisfies the follow-
i=l

ing HJI equation:

0= T L) grigrd’
ox Ox (11
2 T
1|
+— | g7 & +(a—‘lj Ax,
2y Ox ||y Ox

under the assumption of D'C=0 and R=D'D>0
[12].

3. MAIN RESULTS

The HIJI equation shown in equation (11) has the

solution J = %xT Px in the sense of the Lyapunov
function and the L, -gain stability [14]. By substitut-
ing J= %xT Px into the HIT equation (11), we get the
following SDARE:
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0=Clc+pPa+A"P

1 (12)

2

—P(BR“ET -
¥

EW"ETJP,
under the assumption that W is a unitary matrix. Us-

ing the solution to the SDARE and J =%xT Px, we

can obtain the optimal control as
u=-R'BTPx, (13)

which is necessary to implement the robust H, state

feedback controller for the bilinear systems. Since the
SDARE includes the unknown state variable x, we
adopt the successive approximation method for solv-
ing the functional equation of dynamic programming
[1,9]. The proposed algorithm is composed of the fol-
lowing steps under the assumption that

|w()| <w,,, (14)

for the known bound 0<W,, <.

Step 1: Find PO which is the solution of the Ric-

. . . 1 oy
cati equation with J © = EX(O) PO )

0=CTC+ P44 4" pO

15
- PO Br™'BT —%EW‘IET yPO, (15)
Y

corresponding to the linear constraint with an additive
disturbance,
{0 = 494 B O L Ew, 5O (1) = x,,

(16)
RONPNOFWOR

Then we can obtain the stabilizing linear ro-
bust H , control

u(O)(x(t)):—R_IBTP(O)x(O)(t). (17)

Step 2: Convert the bilinear system shown in equa-
tion (6) into the following linear time varying form by
using the result of Step 1.

B = g0 4 DB L gy
20 = cx® 4 pu®, (18)

n
B¥ D =B+ >3 Dy, k=12,

i=1

The initial value and the disturbance input are frozen
in this iteration step. Then we can find the expression

(k)
for [a—) from the following performance index and
X

the partially frozen Hamiltonian.

) (k) (K 1 2
O (x4 4 )’W”OJf):ENX(’f)s
1 iy (k) 2 2 2 (19)
=k {”z -7 w}dt,
LIL®P _ 2 1l
S
wr (20)
+ (Z—Jj [Ax(k) + Ew+ lg’(k‘l)u(k)]
X
From equation (20) and a solution,

T
J(k):%x(k) POXE " of the corresponding HJI

equation, the algebraic H, Riccati equation becomes

0=—P0) (BE-DR-1 D" _ LZEW“ET )Pk
Y Q1)

+ PO 44 4TPR) L T,

By solving equation (21), one can obtain the optinial
control as

u® (x(t))==R'BEY POO (. (22)

Step 3: To obtain the stabilizing robust state feed-
back control subjected to an L, -gain for closed loop

bilinear systems, iterate Step 2 by increasing
k =k +1until the inequality
”x(k) () - x*D (z)” <p (23)

is satisfied for a given small positive parameter £ .

4. CONVERGENCE PROOF

The convergence proof for the proposed algorithm
consists of two parts: (i) find the differences

of x(k+1)(t)—x(k)(t); (ii) develop the inequality that

relates to this iterative relation by using norms.

By substituting equation (22) into equation (18),
one can write the following identity, which relates the
error of two consecutive iterations:

%(x(k‘(“l) (t) —x(k)(t)) = 4® (x(k+1) (t) ~x®) (t))

N (Z(") _ 70D )x(k) @),

24)
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_ - PPN &
where A® = 4- BEDRTBED pO) " Then the
solution of equation (24) is

D (1) x® (1) =) (%D - 40
0
x ((o(s)j:) (/fl (T)EW(Z‘)dT) ds

+ Y’(t)jt; 5"—1 (s)(z(kH) ~A® )x(k) (s)ds,
(25)

where the initial condition for
D (5) -x¥)(15) =0 and ¥(¢) is the funda-
mental matrix of system ¥ ()= Ay (1), satisfy-

ing ¥ (#y) =1 of the dynamic equation shown in equa-

tion (24). Taking the norm of both sides of equation
(25) and using the norm properties, we get

o]t - o
0
where

a =| ()% ()| ()3

+ (o(s)jtz ¢~ (¢)Ew(z)dr

)

and

Z(/H'l) _ Z(k) — (S(k) _ S(k*l))p(kﬂ)

+ %D ( plkst) _ P(k)), (28)

with S® = O g15E" ¢(t) is the fundamental
matrix for ¢(t)= Z(k)go(t) of the dynamic sys-
tem x¥) (r)= AB B 5y 4 Ew(t).Using Lemma 1 and
1, the of S*D_s®) and

S* D have the following relations:

[0 - 5] < ar- [l (4 0l

Corollary norm

=200l |57

)

-

fpeonffe e ey |

<ol -0,

¢l <lr~"]s.,

where

sy =B+ ME|BT |+ m % [P ®

|| EuE,
s =Bl |87| + Bl 1>
oo

e

n
w3

Hence,
“x( b —x( ) SJ-I (ml Hx( )—x( 1)”
)

+ iy ”P“”‘) _p® “)ds,

(30)
m = ”R_l pkD ’sl,
my = al “R_l $y.
Using the results of Bruni et al. [3], we get
lim Hx("“) - x(k)” -0, G1)
k—w
which also implies that
lim HP(’”‘) - P(k)” -0. (32)
k—o
5. NUMERICAL EXAMPLES

The proposed control scheme is illustrated by the
following numerical examples.

Example 1: The bilinear model of a chemical reac-
tor [1] is given by

X x
. =A +(B+lel+X2M2)u+EW,
X2 X

z=Cx+ Du,
where

3/16 5/12 -1/8 0
A= , B= , E= R
-50/3 -8/3 0 1
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and x; and x, represent the temperature and concentra-
tion of a chemical reaction while u represents the
coolant flow rate around the reactor. We choose
y=0.5 and the disturbance input as w=3

fort=0.5,2.5,4.5...and w=0.8x% sin(57zt) otherwise.

In this example, the matrix A has stable eigenval-
ues —1.2396+i2.2154 and -1.2396-i2.2154. The
optimal state and control trajectories are shown in
Figs. 1, 2, and 3. In the figures, the dashed lines repre-
sent the initial trajectories, the dotted lines the first
iteration trajectories, the dashed-and-dotted lines the
second iteration, and the solid lines the third iteration.

In the case of stable bilinear systems with additive
disturbance, the equilibrium state approaches 0.

Example 2: We consider robust H, control

for unstable bilinear systems with additive distur-
bance input.

ol 2 e

The matrix A4 has a stable eigenvalue at -3 and an
unstable eigenvalue at 1. The other parameters are
the same as those of Example 1.

The simulation results are shown in Figs. 4, 5, and 6.

Observe that the states and input of the unstable bilin-
ear systems with additive disturbance oscillate around
the equilibrium point. Figs. 1-6 show that the pro-
posed algorithm has good convergence for both stable
and unstable bilinear systems with additive distur-
bance.

H, %, state

Fig. 1. Trajectories of temperature (Example 1).
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Fig. 2. Trajectories of concentration. (Example 1).
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Fig. 3. Trajectories of input. (Example 1).

Hy X, state

Fig. 4. Trajectories of temperature (Example 2).
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Hy, X, state

Fig. 5. Trajectories of concentration (Example 2).

H input state

Fig. 6. Trajectories of input (Example 2).

6. CONCLUSIONS

In this paper, we propose a new robust H_, control

technique for bilinear systems with additive distur-
bance. The proposed algorithm, based on the succes-
sive approximation method, offers a simple method
for solving the SDARE. We also provide the proof of
convergence. The effectiveness and convergence of
the proposed algorithm is demonstrated in the numeri-
cal examples and indicates that this robust control
scheme is applicable to bilinear systems.
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