원자 이동 라디칼 중합을 이용한 Polystyrene-b-Poly(acrylic acid) 블록 이오노머의 합성 및 분석

Synthesis and Characterization of Polystyrene-b-Poly(acrylic acid) Block Ionomer via Atom Transfer Radical Polymerization

  • 박계리 (기능성고분자 신소재연구센터, 한양대학교 섬유고분자 공학과) ;
  • 안성국 (기능성고분자 신소재연구센터, 한양대학교 섬유고분자 공학과) ;
  • 조창기 (기능성고분자 신소재연구센터, 한양대학교 섬유고분자 공학과)
  • 발행 : 2003.01.01

초록

원자 이동 라디칼 중합 (ATRP)을 이용하여 CuBr/N,N,N',N",N"-pentamethyldiethylene triamine 촉매 시스템하에서 용액중합으로 polystyrene 거대 개시제와 polystyrene-b-t-poly(butyl acrylate) (PS-b-P(tBA)) 블록 공중합체를 합성한 후, 가수분해를 통해 polystrene-b-poly(acrylic acid) 양친매성 블록 공중합체를 얻었다. 또한, 이를 중화하여 블록 이오노머를 제조하였다. 합청된 PS-b-P(tBA) 블록 공중합체는 분자량이 5000-10000 정도로 조절되었고, 분자량 분포도 1.2 이하로 비교적 좁게 나타났다. 공중합체는 $^1$H-NMR, FT-IR로 분석하였으며, DSC로 열적 성질을 측정한 결과, styrene의 비율이 더 많기 때문에 100 $^{\circ}C$ 근처에서 T$_{g}$가 나타났으며, TEM을 통해 이온 그룹의 상분리를 확인하였다.분리를 확인하였다.

Using atom transfer radical polymerization (ATRP), polystyrene macroinitiators and polystyrene-b-poly(t-butyl acrylate) (PS-b-P(tBA) block copolymers were synthesized by CuBr/PMDETA catalyst system in solution. After hydrolysis, polystyrene-b-poly(acrylic acid), amphiphilic block copolymers, were formed. Subsequent neutralization of polyacid block led to the block ionomers. The molecular weight of the synthesized PS-b-P(tBA) block copolymers was easily-controlled to 5000-10000 and their distributions were less than 1.2. The chemical structures of the synthesized block copolymers were characterized by $^1$H-NMR and FT-IR. In the DSC thermograms, $T_g$ appeared in the vicinity of 100 $^{\circ}C$ because of higher styrene content. In addition, the phase separation of the block ionomers was observed by TEM.

키워드

참고문헌

  1. Introduction to Inonmers A. Eisenberg;J. S. Kim
  2. Inonmers: Symethesis, Structure, Properties and Applications M. R. Tant;K. A. Mauritz;G. L. Wilkes
  3. Ionomers: Chracterization, Theory, and Appli-cations S. Schlick
  4. Amphiphilic Block Co-polymers: Self-Assembly and Applications A. V. Kabanov;V. Y. Alakhov
  5. Macromolecules v.27 J. S. Kim;Gaoming Wu;A. Eisenberg https://doi.org/10.1021/ma00081a029
  6. Polymer v.42 J. S. Kim;Y. H. Na;S. S. Jarng https://doi.org/10.1016/S0032-3861(01)00063-5
  7. Eur. Polym. J. v.34 no.1 K. S. Galas https://doi.org/10.1016/S0014-3057(97)00073-6
  8. Eur. Polym. J. v.37 Y. Wang;C. Pan https://doi.org/10.1016/S0014-3057(00)00171-3
  9. Eur. Polym. J. v.36 K. S. Galas;C. Slusarczyk;A. Wlochowicz https://doi.org/10.1016/S0014-3057(99)00290-6
  10. Eur. Polym. J. v.36 K. S. Galas;C. Slusarczyk;A. Wlochowicz https://doi.org/10.1016/S0014-3057(99)00291-8
  11. Eur. Polym. J. v.36 G. Zhang;L. Liu;H. Wang;M. Jiang https://doi.org/10.1016/S0014-3057(99)00048-8
  12. Macromolecules v.24 A. Desjardins;A. Eisenberg
  13. Macromolecules v.27 Z. Zhou;D. G. Peiffer;B. Chu https://doi.org/10.1021/ma00084a023
  14. Langmuir v.16 T. K. Bronich;A. M. Popov;A. Eisenberg;V. A. Kabanov;A. V. Kabanov https://doi.org/10.1021/la990628r
  15. Macromolecules v.33 H. Shen;A. Eisenberg https://doi.org/10.1021/ma991161u
  16. Macromoleculses v.25 X. F. Zhong;S. K. Varshney;A. Eisenberg https://doi.org/10.1021/ma00052a014
  17. Macromol. Chem. Phys. v.202 G. Zhang;M. Jiang;C. Wu https://doi.org/10.1002/1521-3935(20010601)202:9<1750::AID-MACP1750>3.0.CO;2-5
  18. Macromolecules v.31 E. A. Lysenko;T. K. Bronich;A. Eisenberg;V. A. Kabanov;A. V. Kabanov https://doi.org/10.1021/ma980366k
  19. Macromolecules v.30 M. Plante;C. G. Bazuin https://doi.org/10.1021/ma961220t
  20. Macromolecules v.30 C. G. Bazuin;M. Plante;S. K. Varshney https://doi.org/10.1021/ma961221l
  21. Telechelic Polymers: Synthesis and Application D. H. Recard;G. C. Eastmond;M. J. Stewart
  22. Macromolecules v.23 J. P. Hautekeer;S. K. Varshney;R. Fayt;C. Jacobs;R. Jerome;Teyssie https://doi.org/10.1021/ma00219a005
  23. Macromolecules v.24 S. K. Varshney;C. Jacobs;J. P. Hautekeer;P. Bayard;R. Jerome;Ph. Ph. Teyssie https://doi.org/10.1021/ma00018a003
  24. ACS Polym. Prep.(Am. Chem. Soc. Div. Polym. Chem) v.27 T. E. Long;R. D. Allen:J. E. McGrath
  25. ACS Polym. Prep.(Am. Chem. Soc. Div. Polym. Chem) v.30 C. D.Deporter(et. al)
  26. Macromolecules v.33 K. A. Davis;K. Matyjaszewski https://doi.org/10.1021/ma991826s
  27. J. Polym. Sci. Part A: Polym. Chem. v.38 K. A. Davis;B. Charleux;K. Matyjaszewski https://doi.org/10.1002/(SICI)1099-0518(20000615)38:12<2274::AID-POLA170>3.0.CO;2-I
  28. Macromolecules v.34 K. A. Davis;K. Matyjaszewski https://doi.org/10.1021/ma002050u
  29. J. Polym. Sci. Part A: Polym. Chem. v.38 Q. Ma;K. Wooley https://doi.org/10.1002/1099-0518(200012)38:1+<4805::AID-POLA180>3.0.CO;2-O
  30. Macromolecules v.30 J. Xia;K. Matyjaszewski https://doi.org/10.1021/ma971009x
  31. Macromole-culses v.20 M. Szwamoto;T. Enoki;T. Higashimura https://doi.org/10.1021/ma00167a001
  32. ACS Polym. Prep.(Am. Chem. Soc. Div. Polym. Chem) v.40 M. J. Ziegler;H. J. Paik;K. A. Davis;S. G. Gaynor;K. Matyjaszewski
  33. Macromolecules v.33 X. -S. Wang;R. A. Jackson;S. P. Armes https://doi.org/10.1021/ma991612a
  34. ACS Polym. Prep.(Am. Chem. Soc. Div. Polym. Chem) v.40 K. A. Davis;K. Matyjaszewski