이프리플라본을 함유한 생분해성 미립구의 제조와 특성분석

Preparation and Characteristics of Ipriflavone-Loaded PLGA Microspheres

  • 이진수 (전북대학교 유기신물질공학과) ;
  • 강길선 (전북대학교 유기신물질공학과) ;
  • 이종문 (전북대학교 유기신물질공학과) ;
  • 신준현 (삼천당제약 중앙연구소) ;
  • 정제교 (삼천당제약 중앙연구소) ;
  • 이해방 (한국화학연구원 생체고분자연구실)
  • 발행 : 2003.01.01

초록

골다공증 치료제 이프리플라본 (IP)은 조골세포의 분화와 증식을 자극하고 에스트로겐의 존재로 칼시토닌 분비를 강화한다. 조절 가능한 생분해성과 생체적합성으로 인하여 락타이드-글라이콜라이드 공중합체 (PLGA)는 약물방출조절을 연구하는데 가장 적합한 고분자중의 하나이다. 본 연구에서 IP가 함유된 PLGA 미립구는 일반적인 O/W 용매 증발법으로 제조하였으며, 미립구의 크기는 5~200 $mu extrm{m}$의 범위에 있었다. 미립구의 형태는 SEM으로 관찰하였고, 생체외 방출실험에서 IP 방출량은 HPLC로 분석 하였다. 젤라틴 및 PVA등의 유화제 사용으로 가장 높은 약물 포접율을 얻을 수 있었다. 미립구의 형태, 크기 및 약물 방출 패턴은 PLGA의 분자량 (8, 20, 33 및 90 kg/mol), 고분자용액의 농도 (2.5, 5, 10 및 20%), 유화제의 종류 (PVA, gelatin 및 Tween 80), 초기 약물 함유량 (5, 10, 20 및 30%) 및 교반속도 (250, 500 및 1000 rpm) 등과 같은 여러 제조 변수들에 의하여 조절할 수 있음을 알 수 있었다. 생체외 방출실험에서 IP 방출은 제조조건을 조절함으로써 거의 영차방출 형태로 30일 이상으로 지속적이었다 또한, XRD와 DSC로 IP 함유 PLGA 미립구의 물리화학적인 성질을 조사하여 방출메카니즘을 고찰하였다.

Ipriflavone (IP) stimulates proliferation and differentiation of osteoblast and also enhances calcitonin secretion in the presence of estrogen. Poly(lactide-co-glycolide) (PLCA) due to its controllable biodegradability and relatively good biocompatibility is one of the most significant candidates for the study of drug controlled release system. In this study, IP-loaded PLGA microspheres (MSs) was prepared by using conventional O/W solvent evaporation method. The size of MSs was in the range of 5~200 $mu extrm{m}$. The morphology of MSs was characterized by SEM. And, in vitro release amounts of IP were analyzed by HPLC. The highest encapsulation efficiency were obtained by using gelatin and polyvinyl alcohol (PVA) as emulsifiers. The morphology, size distribution, and in vitro release pattern of MSs were changed by several preparation parameters such as molecular weights (8, 20, 33 and 90 kg/mol), polymer concentrations (2.5, 5, 10 and 20%), emulsifier types (PVA, gelatin and Tween 80), initial drug loading amount (5, 10, 20 and 30%) and stirring speed (250, 500 and 1000 rpm). The release of IP in vitro was more prolonged over 30 days, with close to zero-order pattern by controlling the preparation parameters. The physicochemical properties of IP-loaded PLGA MSs were investigated by XRD and DSC.

키워드

참고문헌

  1. Drugs Exp. Clini. Res. v.15 D. Agnusdei;F. Zancchei;S. Bigazzi;C. Cepollaro;C. Gennari
  2. J. Kor. Pharm. Sci. v.30 J. K.Jeong;G. Khang;J. M. Rhee;H. C. Shin;H. B. Lee
  3. J. Pharm. Sci. v.57 S. L. Lin;J. Menig;L. Lachman https://doi.org/10.1002/jps.2600571225
  4. Int. J. Clin. Pharmacol. Res. v.11 I. Rondelli;D. Acerbi;P. Ventura
  5. Int. J. Pharm. v.106 C. k. Kim;J. Y. Choi;Y. S. Yoon;J. P. Gong;H. G. Choi;J. Y. Kong https://doi.org/10.1016/0378-5173(94)90272-0
  6. Polymer(Korea) v.24 J. C. Cho;G. Khang;H. S. Choi;J. M. Rhee;H. B. Lee
  7. Korea Polym. J. v.8 G. Khang;H. S. Choi;J. M. Rhee;S. C. Yoon;J. C. Cho;H. B. Lee
  8. Biomater. Res. v.4 W. I. Son;D. I. Yun;G. Khang;B. S. Kim. H. B. Lee
  9. Polymer(Korea) v.25 H. S. Choi;S. W. Kim;D. I. Yun;G. Khang;J. M. Rhee;Y. S. Kim; H. B. Lee
  10. Methods of Tissue Engineering G. Khang;H. B. Lee;A. Atala(ed.);R. Lanza(ed.)
  11. Polym. Sci. Tech. v.10 G. Khang;I. Jo;J. H. Lee;I. Lee;H. B. Lee
  12. Polym. Sci. Tech. v.10 G. Khang;J. H. Lee;H. B. Lee
  13. Bio-Med. Mater. Eng. v.9 G. Khang;J. C. Cho;J. W. Lee;J. M. Rhee;H. B. Lee
  14. Polymer Preprints v.40 H. B. Lee;G. Khang;J. C. Cho;J. M. Rhee;J. S. Lee
  15. Korea Polym. J. v.8 G. Khang;J. H. Lee;J. W. Lee;J. C. Cho;H. B. Lee
  16. Int. J. Pharm. v.234 H. S. Choi;G. Khang;H. Shin;J. M. Rhee;H. B. Lee https://doi.org/10.1016/S0378-5173(01)00968-1
  17. J. Biomater. Sci. Polym. Ed. v.13 S. J. Lee;G. Khang;Y. M. Lee;H. B. Lee https://doi.org/10.1163/156856202317414375
  18. Polym. Sci. Tech. v.12 G. Khang;I. Lee;J. M. Rhee;H. B. Lee
  19. Macromol. Symp. v.14 no.3 H. S. Seong;D. S. Moon;G. Khang;H. B. Lee
  20. Polymer(Korea) v.26 H. S. Seong;D. S. Moon;G. Khang;H. B. Lee
  21. Biomater. Res. v.4 D. S. Moon;G. Khang;H. S. Seong;J. M. Rhee;J. S. Lee;H. B. Lee
  22. Polymer(Korea) v.26 T. K. An;H. J. Kang;J. S. Lee;H. S. Seong;J. K. Jeong;G. Khang;Y. Hong;H. B. Lee
  23. Biomater. Res., in Press T. K. An;J. S. Lee;P. K. Shin;H. S. Seong;G. Khang;H. B. Lee
  24. Macromol. Symp. v.15 no.4 T. K. An;J. S. Lee;P. K. Shin;S. H. Cho;G. Khang;H. B. Lee
  25. Polymer(Korea) v.26 T. K. An;H. J. Kang;D. S. Moon;J. S. Lee;H. S. Seong;J. K. Jeong;G. Khang;H. B. Lee
  26. Int. J. Pharm. v.239 S. A. Seo;H. S. Choi;G. Khang;J. M. Rhee;H. B. Lee https://doi.org/10.1016/S0378-5173(02)00074-1
  27. Macromol. Res. v.10 G. Khang;S. A. Seo;H. S. Choi;J. M. Rhee;H. B. Lee https://doi.org/10.1007/BF03218313
  28. Int. J. Pharm. v.43 R. Bodmeier;J. W. McGinity https://doi.org/10.1016/0378-5173(88)90073-7
  29. Pharm. Res. v.4 R. Bodmeier;J. W. McGinity https://doi.org/10.1023/A:1016419303727
  30. Int. J. Pharm v.175 M. Guyot;F. Fawaz https://doi.org/10.1016/S0378-5173(98)00253-1
  31. Polymer(Korea) v.25 G. Khang;S. A. Seo;H. S. Choi;D. H. Lee;J. M. Rhee;H. B. Lee
  32. J. Microencapsulation v.7 R. Jalil;J. R. Nixon https://doi.org/10.3109/02652049009021842