Surface Plasmon Resonance Immunosensor for Detection of Legionella pneumophila

  • Oh, Byung-Keun (Department of Chemical Engineering, Sogang University) ;
  • Lee, Woochang (Department of Chemical Engineering, Sogang University) ;
  • Bae, Young-Min (Department of Chemical Engineering, Sogang University) ;
  • Lee, Won-Hong (Department of Chemical Engineering, Sogang University) ;
  • Park, Jeong-Woo (Department of Chemical Engineering, Sogang University)
  • Published : 2003.04.01

Abstract

An immunosensor based on surface plasmon resonance (SPR) onto a protein G layer by Self-assembly technique was developed for detection of Legionella pneumophila. The protein G layer by self-assembly technique was fabricated on a gold (Au) surface by adsorbing the 11-mercaptoundecanoic acid (MUA) and an activation process for the chemical binding of the free amino (-NH$_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of the protein G layer by self-assembly technique on the Au Substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The Surface topographies of the fabricated thin films on an Au substrate were also analyzed by using an atomic force microscope (AFM). Consequently, an immunosensor for the detection of L. pneumophila using SPR was developed with a detection limit of up to 10$^2$CFU per mL.

Keywords

References

  1. N. Engl. J. Med. v.297 Legionnares' disease: Isolation of a bacterium and demonstration of its role in other respiratory disease McDade,J.E.;C.C.Shepard;D.W.Fraser https://doi.org/10.1056/NEJM197712012972202
  2. Zinsser Microbiology(20th Ed.) Joklik,W.K.;H.P.Willett;D.B.Amos;C.M.Wilfert
  3. Bio/Technology v.5 Viable Legionella pneumophilia not detectable by culture on agar media Hussong,D.;R.R.Colwell;M.O'Obrien;E.Weiss;A.D.Pearson;R.M.Wiever;W.D.Burge https://doi.org/10.1038/nbt0987-947
  4. Sens. Actuat. B v.49 A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine Sakai,G.;K.Ogata;T.Uda;N.Miura;N.Yamazoe https://doi.org/10.1016/S0925-4005(98)00107-5
  5. Sens. Actuat. B v.52 Surface design of SPR-based immunosensor for the effective binding of antigen or antibody in the evanescent field using mixed polymer matrix Toyama,S.;A.Shoji;Y.Yoshida;S.Yamauchi;Y.Ikariyama https://doi.org/10.1016/S0925-4005(98)00257-3
  6. J. Microbiol. Biotechnol. v.12 Detection of Escherichia coli O157:H7 using immunosensor based on surface plasmon resonance Oh,B.K.;Y.K.Kim;Y.M.Bae;W.H.Lee;J.W.Choi
  7. Immunomethods v.3 Strategies for the immobilization of antibody Willfried,S.;S.H.Paek;Gundula,V. https://doi.org/10.1006/immu.1993.1043
  8. J. Microbiol. Biotechnol. v.11 Fluorescence immunoassay of HDL and LDL using protein LB film Choi,J.W.;J.H.Park;W.Lee;B.K.Oh;J.Min;W.H.Lee
  9. Sens. Actuat. B v.66 Study on higly sensitive potentiometric IgC immunosensor Feng,C.L.;Y.H.Xu;L.M.Song https://doi.org/10.1016/S0925-4005(00)00382-8
  10. Biosens. Bioelectron. v.13 Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial recognition layer of a surface plasmon resonance immunosensor Darren,M.D.;C.C.David;H.X.You;R.L.Christopher https://doi.org/10.1016/S0956-5663(98)00059-1
  11. Science v.284 Design and self-assembly of open regular 3D mesostructure Breen,T.L.;J.Tien;S.R.J.Oliver;T.Hadzic;G.M.Whitesides https://doi.org/10.1126/science.284.5416.948
  12. Bio/Technology v.5 Bacterial Fc receptors Boyle,M.D.P.;K.J.Reis https://doi.org/10.1038/nbt0787-697
  13. Colloids Surf. B v.21 Labelling and binding of poly-(L-lysine) to functionalized gold surface: Combined FT-IRRAS and XPS characterization Yam,C.M.;L.Zheng;M.Salmain;C.M.Pradier;P.Marcus;G.Jaouen https://doi.org/10.1016/S0927-7765(00)00215-0
  14. Rev. Sci. Instrum. v.68 Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes, and their corresponding imaging technique including Brewster angle microscopy Harke,M.;R.Teppner;O.M.Schulz;H.Orendi https://doi.org/10.1063/1.1148256
  15. Z. Phys. v.241 Die bestimmung optischer konstanten von metallen durch anregung von oberflachenplasmaschwingungen Kretschmann,E. https://doi.org/10.1007/BF01395428
  16. Biosens. Bioelectron. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance Oh,B.K.;Y.K.Kim;W.Lee;Y.M.Bae;W.H.Lee;J.W.Choi
  17. Biosens. Bioelectron. v.9 Real-time biospecific interaction analysis Lundstrom,I. https://doi.org/10.1016/0956-5663(94)80071-5
  18. J. Chromatogr. v.597 Biospecific interaction analysis using SPR detection applied to kinetic, binding site and concentration analysis Fagerstam,L.G.;A.Frostell-Karlsson;R.Karlsson;B.Persson;I.Ronnberg https://doi.org/10.1016/0021-9673(92)80137-J
  19. Appl. Spectrosc. v.42 A compact surface plasmon resonance sensor for water in process Matsubara,K.;S.Kawata;S.Minami https://doi.org/10.1366/0003702884429832
  20. Langmuir v.14 Two-dimensional structure of disulfides and tiols on gold(111) Nelles,G.;H.Schonherr;M.Jaschke;H.Wolf;M.Schaub;J.Kuther;W.Tremel;E.Bamberg;H.Ringsdorf;H.Butt https://doi.org/10.1021/la9709709
  21. J. Sci. Food. Agric. v.79 Use of chicken eggyolk antibodies against K88+fimbral antigen for quantitative analysis of enterotoxigenic Escherichia coli(ETEC)K88 by a sandwich ELSIA Kim,J.W.;L.Z.Jin;S.H.Cho;R.R.Marquardat;A.A.Frohlich;S.K.Baidoo https://doi.org/10.1002/(SICI)1097-0010(199908)79:11<1513::AID-JSFA396>3.0.CO;2-0